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Abstract— In the present work we study the effect that the metallic quality of the contacts by which an external current is applied, has on 

the magnetic properties of a superconducting sample. We analyze the magnetization, magnetic susceptibility, Cooper pair density as applied 

magnetic field function. The contacts are simulated using the 𝛾 parameter, and anisotropy is present in sections with different critical 

temperatures modeled by the 𝜏(𝑥, 𝑦) function in the Ginzburg-Landau formalism. We establish how the nature of the contacts and the presence 

of the weak Lorentz force influence the magnetic response and the vortex state of the sample. 
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I. INTRODUCTION 
 

Many have been the advances during the last years in the area of 

superconductivity, among these, there are the theoretical and 

experimental development of superconductors of one, two and three 

bands, including the novel fractional vortices, this added to systems 

that include inclusion of external currents, applications to small 

variations of magnetic fields (Squids), topological superconductors 

and exotic phases that present these types of systems, such as 

Hopfions, Skirmions and Kinks among others [1-8]. This vast interest 

has been developed given the special properties that these systems 

have in superconducting state, for example in the case of type I 

superconductors, the conduction of electrical currents without loss 

Ohmincas, shielding of external fields and anchoring of materials, 

through pinnings and anti-pinnings and for type II superconductors, 

coordinated movement of superconductive state losses (vortices), 

oscillations in heat capacity and magnetic susceptibility even 

performing studies of vortex / anti-vortice annihilation, generating 

power losses in the system. Given this, metastable characteristics of 

different types of compounds have been studied, for example 

Mo/MoO_(3-x) for their applications in different types of technologies 

and magnetoresistance behavior in different types of materials for 

temperatures close to the critical temperature T_c and more 

importantly, the study and analogy of the conservation of the spin load 

in the superconducting state, ie where the spin flows without losses in 

the superconducting state, behavior that It can be used in systems that 

emulate the logic gates or spitronic which is one of the branches called 

to replace the current electronic. Thus, the study of the behavior of the 

state of vortices in the presence of external current and the dynamics 

of the vortices given this inclusion of current and the study of 

depreciation of the superconducting state, due to the presence of an 

external magnetic field gives an account of possible effects on the state 

of vortices, which are extremely important in terms of the 

manipulation of vortices in mesoscopic samples [9-16].  Given this, in 

this paper we present the behavior of the vortices in a superconducting 

nano/prism with the inclusion of depreciation of the superconducting 

state in a given section (deformed system in the Ginzburg-Landau 

theory), which in our system, establishes the addition of metal 

contacts, where the inclusion of the current in the system would be 

carried out, we will study the effect on the magnetization, vortex state 

and susceptibility, of the external current and temperature of the 

defects. 

 

 

II. THEORETICAL FORMALISM 
 

We consider an anisotropic rectangle in presence of an external 

Lorentz force with a central defect of a different critical temperature. 

The sample is very thin,d ≪ ξ, where ξ is the coherence length and λ 

is the London penetration depth. Within this approximation, we can 

neglect the magnetic field produced by the transport current itself. 

Therefore, it can be treated as a two-dimensional problem The 

formalism used to study the system considered in Figure 1(a-b) is 

given by the time-dependent Ginzburg-Landau (TDGL) equations 

[17-22]. 

 
𝜇

√1+Γ2|𝜓|2
Θ =  −(𝑖∇ − 𝑨)2𝜓 + 𝜓(𝜏 − |𝜓|2)    (1) 

 
𝜕𝑨

𝜕𝑡
= 𝑅𝑒[𝜓∗(𝑖∇ − 𝑨)𝜓] − 𝜅2∇ × ∇ × 𝑨   (2) 

 

In the equations (1) and (2) we have, Θ=[∂ψ/∂t+Γ^2/2  

(∂|ψ|^2)/∂t+iϕψ], ψ is the orden parameter, A is the potential vector, κ 

is the Ginzburg-Landau Parameter (GLP), τ is related with the local 

temperature of the defects, ϕ is the scalar potential. We take Γ=10, 

μ=2.5, which are taken from the microscopic character of the 

superconductivity. The equations are presented in an adimensional 

form, as follows: ψ in units of ψ_∞, lengths in units of ξ; A in units of 

H_c2 ξ, where H_c2  is the second critical field, T the temperature in 

units of the critical temperature T_c, time in units of Ginzburg-Landau 

time t_GL  = πℏ∕8k_B  T_c, scalar potential Φ in ϕ_0=ℏ∕(2et_GL )  , 

the external applied current J in units of J_0=cσℏ∕(2et_GL ), where σ 

is the conductivity in the normal state. We use T=0 for all simulations. 

The size of the grid is δ_x= δ_y=0.1ξ. The usual boundary condition 

is: 

 

n∙(i∇-A)ψ=0,     out of the contacts               (3) 

n∙(i∇-A)ψ=γψ=γ(1-δ/b)ψ  in the contacts             (4) 

 

The equations (3) and (4) represents the ususal superconducting-

any material interface and b is the deGennes parameter. Thus γ=0 

simulates an interface at the normal state, 0 <γ<1simulates a 

superconductor-metal interface (b >δ); γ=1, simulates a 

superconductor vacuum interface (b →∞); and a superconductor-

superconductor interface is described by γ>1(b <0). Our study is 

organized as follows: Case (a) we considered the system showed in the 

Figure 1 (a) taking J=0.5, τ=0, for several values of the magnetic field 

H and γ, analizying its influence of magnetization -4πM, magnetic 

susceptibility χ_m and superconducting electronic density |ψ|^2. Case 

(b) we considered the system showed in the Figure 1(b) for several 

values of γ and τ remain the magnetic field and applied current 

constant. τ (x,y) is a local critical temperature function; τ < 1 (τ > 1) 

for a defect of lower (greater) critical temperature. To calculate the 

magnetic susceptibility, we used: 

 

𝜒𝑚 =  
𝜕𝑀

𝜕𝐻
     (5) 

 

4𝜋𝑴 = ⟨𝑯⟩ − 𝑯     (6) 

 

In the equations (5) and (6), M is the magnetization and 〈H〉 is te 

mean value of the magnetic induction. The equations (5) is 

numerically solved using the Runge–Kutta method of fifth order. 

 

Figure 1. Layout of the studied cases, superconducting square nanoprism 

of areas: A=10ξ×8ξ for the case a) and A=24ξ×12ξ, for case b). a=2ξ, 

b=0.5,d=0.1ξ, and J=0.5.L is the longest size. 
Source: Own elaboration. 

 

 

III. RESULTS 

 

Since the magnetization curve accounts for the entry or exit of 

fluixoids in the simple, but not for its possible movement in the 

sample, the weak Lorentz force F_L=J×H, does not appreciably 

change the vortex movement in the dynamics, but is strong enough to 

influence the vortex matter in the sample, simulating a vortex river 

guide. 

 

In the Figure 1, we show the layout f the studies cases. τ(x,y) is 

presented in the superior red zones and  γ vary in the contacts (lateral 

red zones), for rest of the sample τ(x,y)=1.0, (green zones). In the 

Figure 2(a,b,c). we plot the magnetization as a magnetic field function 

for the case (a), for a) the contacts are made of another 

superconducting material at higher critical temperature, b,c) the 

contacts are made of a metallic material, for J=0.5,1.2. H_1 is the 

magnetic field for the first vortex entry in the sample. We can see that 

for γ=0.8,0.9 for H>0.75 the sample remains in the Meissner state, also 

H_1 is independent of γ<1.1 (Figure 2(a,b)). However, the 

magnetization curves present a non conventional behaviour, the 

Meissner state (Linear parte of the curve) reamains ever after reaching 

H_1. This behavior that accounts for possible oscillations of the 

vortices around their equilibrium position before the entry of 

additional vortices in the sample. 
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In the Figure 3 and Figure 4, we present the magnetic susceptibility 

χ_m for several γ parameters. As is well know, when the H is 

increased, at a certain point H_1 a Meissner– Shubnikov state 

transition occurs. At this point, the susceptibility, magnetization and 

number of vórtices, jumps abruptly, if the magnetic field is increased, 

the magnetic susceptibility, and magnetization, decreases until another 

vortex penetrates when it jumps occur, the vorticity N always 

invcreases. This continues until the superconducting–normal state 

transitions. We can see that in the Figures 3(b-d) there is no 

appreciable variation of H_1. While in Figure 3(a) this variation is 

observed, being a result compatible with Figures 2. It can be seen in 

Figures 3, that for H>1.2, the susceptibility is null in all cases. We can 

see that for the susceptibility there is a behavior that is not as smooth, 

this is due to a possible additional vortex vibration in their equilibrium 

position, due to the external current. Already in Figure 4(a), it can be 

seen that χ_m is canceled for smaller values of the magnetic field, this 

is the result of the nature of the contact material (γ<1 (metallic 

contact), γ<1 (superconductig contact). So, the system has a more 

efficient response, if the contacts are made of another superconducting 

material at higher critical temperature. On the another hand, the 

discontinuities in the magnetic susceptibility is less abrupt when we 

take a superconducting contact. This behavior is due to proximity 

effects between two materials in different phases. When the metal and 

superconducting at higher critical temperature internal boundary 

conditions are used in the contacts, we found that the highest values of 

χ_m are rindependent of γ, so, our results show that the highest (and 

lowest) values of magnetic susceptibility are independent of the 

temerature of the defects. 

 

 
Figure 2. Magnetization curves as a magnetic field function for the case a), 

for several values of 𝑱 and 𝛾. 𝐻1 is the magnetic field for which the first vortex 

entry in the simple. 
Source: Own elaboration. 

 

In the Figure 5 (case a) and Figure 6 (case b), we plot the vortex 

configuration in stationary states at indicates magnetic fields.  It is 

observed how is the entry and configuration of the vortices in the 

superconducting material and how is the movement of these vortices 

in the sample. In the case for γ=0.8, we can see that the entry of the 

vortices in the sections outside the contacts is slower than in the case 

presented for γ=1.1, establishing that for the superconducting system, 

the superficial energy barrier is lower when we take γ>1. 

 

Lets now to analyze the case b). In this configuration, the defect 

present in the sample crosses the superconducting rectangle. Initially 

we present the effect that magnetization has on the value change for τ 

and subsequently on γ in the sample. In the Figure 6, the vortex 

penetrates by the contacts, invreasing the magnetic field, they move 

perpendicularly to the applied corrent until the up to half of the sample, 

where they repel parallely to the Lorentz force. The applied current is 

under the critical current, is very weak, and the movement of the 

vortex, always obeys the force due to magnetic pressure. When γ>1 

valus in taken less vortices remain in the superconducting region. Still 

concerning Figure 5 and Figure 6, similar behavior occurs for both 

studied cases, but with a subtle difference. The vortex configuration at 

the center of the square is symmetrical in the case b) and assymetrical 
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in the case a). Indeed, ψ is minimal at the center of the defect. Notice 

that the vortices move away from each other symmetrically 

(assymetrically) with respect to the center of the square and, ψ nearly 

vanishes across the central channel. This behavior is due to the pinning 

center force of the vortex guide. 

 

 

Figure 3. Magnetic susceptibility as a magnetic field function for the case 

a), for 𝐽 = 0.5 and several values of 𝛾 > 1. 

Source: Own elaboration. 

 

In the Figure 7 and Figure 8, we plot the magnetization and vortex 

number, as a magnetic field function for the case b) for several γ and 

τ values. We can appreciate that H_1 depends strongly on  τ, is a results 

evident, due that the Beam-Levingston energy barrier dimished when 

the temperature and the degennes parameter, so, H_1  invreases when 

γ and τ increases. Thus the differents  H_1 is due the temperature of 

the defects and nature of the contacts, as is well know, as γ→0, the 

Beam Livingston barried energy diminished and , H_1→0. 

Nevertheless, in the Meissner phase, which is common to all the cases, 

the overall value of the maximun is less when a metalic contacs is 

used. At high magnetic fields ( H≥1.0), in the Figure 8(b,c),  the N(H) 

curve show a soft vortex transitions, demonstrating the presence of a 

high magnetic quantized flux into the simple, this fact, can difficult  

the typical abrut vortex transitions. The magnetic field penetrates the  

simple continously until reaching H_2 (superconducting normal 

transition magnetic field). 

 

Figure 5. Superconducting electronic density |𝜓|2 for several magnetic 

fields for the case a), for 𝐽 = 0.5 
Source: Own elaboration. 

 

 

 

Figure 6. Superconducting electronic density |𝜓|2 for several magnetic 

fields for the case b), for 𝐽 = 0.5. 
Source: Own elaboration. 

 
 

Figure 7. (a) Magnetization and (b) vortex number N, as a magnetic field 

function for the case b), for 𝐽 = 0.5, 𝜏 = 0, for the indicated 𝛾 values. 

Source: Own elaboration. 

 

The growth of H_1 means that the higher the γ factor is, more 

diamagnetic the material is, as is well known from an experimental 

point of view, since the shielding of the first penetration of vortices 

could be enhanced by the inclusion of defects made from another 

superconductor with a higher critical temperature [23]. Now for the 

vorticity N(H), the continuous vortex entry of the first N=4 vortices 

can be seen for metallic contacts, and N=6 vortices can be seen for a 

superconducting contact. 
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Figure 8. (a) Magnetization and (b,c) vortex number N, as a magnetic field 

function for the indicated values. 

Source: Own elaboration. 

 

 

IV. CONCLUSIONS 

 

By solving the time-dependent Ginzburg- Landau equation, we 

analyzed the superconducting state of a rectangle with topological 

defects with different critical temperatures under a weak applied 

Lorentz force. We studied the effect of the temperatura of the defects 

and the boundary conditions of the contacts on the magnetic 

susceptibility, magnetization, vorticyty and Cooper pairs. We found 

that the critical field for the transition to the normal state H_2, 〖(H〗

_1) is indepedent (depend strongly) of the geometry, temperature of 

the defects, and on the boundary conditions used in the contacts where 

the extrernal current is applied. We found that for a small defect, at 

high magnetic fields, the vortex configuration is non-symmetrically 

due to the asymmetry of the supercurrent in the sample. Thus our 

results are of experimental importance, since the vortices can be 

controlled by including defects of other superconducting materials 

with different critical temperatures [24]. 
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