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Abstract— Accurate solar radiation prediction leverages various machine learning techniques, with artificial neural networks (ANN) being 

the most common and precise due to their ability to detect and learn relationships between meteorological variables and solar radiation. 

Traditionally, training and deploying these models require high-capacity computers. However, the proliferation of low-power smart devices, 

such as embedded systems and mobile devices, necessitates exploring methodologies for implementing ANN on systems with limited 

computational resources. This paper proposes a quantized neural network model for solar radiation prediction, considering the hardware 

limitations of low-power devices like the Raspberry Pi RP2040 microcontroller. The methodology involves five stages: hardware and software 

selection, neural network development and quantization, microcontroller implementation, model validation, and result analysis. Experimental 

design allows detailed performance evaluation of quantized neural networks, demonstrating that the TensorFlow Lite Quantized Aware model 

is suitable for solar radiation prediction. Metrics such as root mean square error (RMSE) of 44.24 and R² of 0.96 indicate that the selected 

quantized model differs from the original non-quantized model by less than 0.5% in RMSE and 0.04% in R². The study concludes that 

implementing quantized ANN models on microcontrollers is a technically and economically viable solution for solar radiation prediction. 

Quantization enables complex predictive models to run on low-cost, energy-efficient devices, thereby democratizing advanced prediction 

technologies for critical applications like solar energy generation. 

Keywords: quantized neural network, solar radiation prediction, microcontroller. 
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I. INTRODUCTION 
 

Solar radiation prediction is crucial in various applications, especially in energy generation, as it enhances the efficiency of photovoltaic 

solar power systems by enabling better production planning [1]. Machine learning techniques, particularly artificial neural networks (ANN), are 

commonly and effectively used for precise solar radiation prediction because they can detect and learn the relationships between meteorological 

variables and solar radiation. While ANN models are typically trained and deployed on high-capacity computers, the growing prevalence of 

low-power smart devices, such as embedded systems and mobile devices, necessitates research into methodologies for implementing ANN on 

systems with limited computational capabilities [2]. 

 

Quantization is a technique used to reduce hardware resource consumption in ANN implementation. This method decreases the precision 

of the ANN's weights and activations by converting the standard floating-point format to lower-bit formats. Reducing the bit count lowers 

computational intensity in terms of memory and energy consumption during processing. This technique facilitates the implementation of ANN 

on low-cost, low-power devices, particularly in autonomous solar energy monitoring and control systems [3], [4], [5]. 

 

Despite the hardware efficiency gains from quantization, challenges such as model precision loss must be addressed. Reducing the bit count 

for weight representation can degrade performance, especially in predictive tasks like solar radiation forecasting. Additionally, selecting the 

precision level for each network layer is crucial to ensure the model can still learn data patterns effectively [6], [7], [8]. 

 

To address these challenges, we propose a quantized ANN model for accurate solar radiation prediction, implemented on a microcontroller. 

This approach reduces the network's weights and activations, optimizing the limited computational resources of the microcontroller. By applying 

quantization, the model maintains satisfactory prediction accuracy while adapting to hardware constraints, demonstrating the feasibility of 

deploying advanced machine learning technologies on low-power platforms [9], [10]. 

 

This paper details the development and evaluation of a quantized ANN model for solar radiation prediction using the Raspberry Pi RP2040 

microcontroller. The study covers the design, implementation, and testing stages of the model, highlighting the network architecture adaptations 

to maximize computational efficiency without compromising prediction accuracy. We discuss the implementation challenges and the solutions 

adopted, providing a valuable framework for future research on implementing intelligent systems on constrained hardware platforms. 

 

 

II. METHODOLOGY 
 

The development process of a quantized Artificial Neural Network (ANN) model for solar radiation prediction encompasses five critical 

stages: hardware and software selection, neural network development and quantization, microcontroller implementation, model validation, and 

results analysis. 

 

a. Selection of Hardware and Software 
 

The hardware selection process involves a comprehensive analysis of various microcontrollers, evaluating their processing and memory 

capacities using the Binary Decision and Selection Method (BDSM) [11]. This method involves creating an attribute matrix, followed by an 

emphasis matrix, and ultimately a solution matrix to determine the optimal device for ANN implementation, prioritizing the attributes with the 

highest weight. Software selection involves reviewing various ANN programming and quantization libraries and tools (e.g., TensorFlow (TF) 

[12], PyTorch [13]), considering factors such as ease of use, flexibility, computational efficiency, and available documentation [14]. 

 

b. Development and Quantization of the Neural Network 
 

The ANN is initially designed using Convolutional Neural Network (CNN) and Fully Connected Neural Network (FCNN) architectures 

with various layer configurations. Quantization of the ANN is then performed using two main approaches [15], [16]: 

• Quantization-Aware Training (QAT): This method involves quantizing weights and activations during training. It is applied in three 

scenarios: (i) training from scratch with a randomly initialized network, (ii) retraining a pre-trained model by quantizing it and 

briefly retraining on the same dataset, and (iii) fine-tuning a pre-trained model on a different dataset [17]. 

• Post-Training Quantization (PTQ): This method requires only a small unlabeled calibration set, reducing the model size by 4x and 

accelerating inference by 2-3x [18]. PTQ is applied after model training, eliminating the need for retraining and access to the full 

training dataset. 

 

c. Microcontroller Implementation 

 

The quantized model is programmed into the Raspberry Pi RP2040 microcontroller. This involves coding for input data collection, ANN 

execution, and prediction processing [19], [20]. The model is loaded onto the microcontroller using Python, and the necessary code is developed 

for input data collection. The microcontroller executes the ANN model by processing input data through its layers with quantized weights and 

generates predictions, which are then displayed. 

 

d. Model Validation 
 

Model validation assesses the model's ability to generalize patterns from training data to new data. For the solar radiation prediction model 

implemented on the Raspberry Pi RP2040 microcontroller, validation involves comparing model predictions with actual solar radiation data. 

 

Independent solar radiation datasets, not used during model training, are collected and used as inputs for the implemented model, which 

generates corresponding predictions. Performance metrics such as the R² coefficient and Root Mean Squared Error (RMSE) are used to quantify 

model accuracy. The R² coefficient measures the goodness of fit, with values close to 1 indicating a perfect fit. RMSE measures prediction error 

dispersion, with lower values indicating better accuracy [21]. 
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e. Results Analysis 
 

A thorough comparison of the quantized model's performance with similar models is conducted, identifying areas for improvement and 

optimization opportunities. Potential weaknesses in the current implementation are addressed with proposed solutions, including adjustments 

in quantization algorithms, code optimizations for model execution on the microcontroller, or changes in the model architecture to better suit 

hardware constraints. 

 

By addressing these stages comprehensively, the proposed quantized ANN model demonstrates the feasibility and effectiveness of deploying 

advanced machine learning techniques on low-power, cost-effective devices for solar radiation prediction. 

 

 

III. RESULTS 
 

a. Selection of Hardware and Software 

 

The microcontroller selection involved comparing four devices: PIC16F877, Raspberry Pi (RPi) RP2040, Arduino Uno, and Arduino Nano 

33 BLE. Table 1 details the most relevant technical specifications for each device. 

 
 Table 1: Microcontroller analysis parameters. 

Microcontroller 
Energy Consumption 

(mA) 

Processing Speed 

(MHz) 

Flash Memory 

(Kb) 

Price 

(Thousands of COP) 

PIC16F877 25 20 14 69 

RPi RP2040 12 133 16,000 16 

Arduino Uno 50 16 32 33 

Arduino Nano 33 BLE 15 64 1,000 300 

 Source: Own Elaboration. 

 

A matrix of attributes (Table 2) was created, assigning a corresponding variable to each attribute: A1 for energy consumption, A2 for 

processing speed, A3 for storage, and A4 for price. Emphasis coefficient matrices were also developed for each attribute (Tables 3 to 6). 

 
      Table 2: Microcontroller Attribute Matrix. 

 A1 A2 A3 A4 Value Weight 

A1 x 1 0 1 2 0.333 

A2 0 x 1 1 2 0.333 

A3 1 0 x 0 1 0.167 

A4 0 0 1 x 1 0.167 

Total 6 1 

Source: Own Elaboration. 

 
   Table 3: Emphasis Coefficient Matrix for Attribute A1: Energy Consumption. 

 PIC16F877 RPi RP2040 Arduino Uno Arduino Nano 33 BLE Value Weight 

PIC16F877 x 0 1 0 1 0.167 

RPi RP2040 1 x 1 1 3 0.5 

Arduino Uno 0 0 x 0 0 0 

Arduino Nano 33 BLE 1 0 1 x 2 0.333 

TOTAL 6 1 

Source: Own Elaboration. 

   Table 4: Emphasis Coefficient Matrix for Attribute A2: Processing Speed. 

 PIC16F877 RPi RP2040 Arduino Uno Arduino Nano 33 BLE Value Weight 

PIC16F877 x 0 1 0 1 0.167 

RPi RP2040 1 X 1 1 3 0.5 

Arduino Uno 0 0 x 0 0 0 

Arduino Nano 33 BLE 1 0 1 x 2 0.333 

Total 6 1 

Source: Own Elaboration. 

 
   Table 5: Emphasis Coefficient Matrix for Attribute A3: Flash Memory Storage. 

 PIC16F877 RPi RP2040 Arduino Uno Arduino Nano 33 BLE Value Weight 

PIC16F877 x 0 0 0 0 0 

RPi RP2040 1 x 1 1 3 0.5 

Arduino Uno 1 0 x 0 1 0.167 

Arduino Nano 33 BLE 1 0 1 x 2 0.333 

Total 6 1 

Source: Own Elaboration. 
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   Table 6: Emphasis Coefficient Matrix for Attribute A4: Price. 

 PIC16F877 RPi RP2040 Arduino Uno Arduino Nano 33 BLE Value Weight 

PIC16F877 x 0 0 1 1 0.167 

RPi RP2040 1 x 1 1 3 0.5 

Arduino Uno 0 1 x 1 2 0.333 

Arduino Nano 33 BLE 0 0 0 x 0 0 

Total 6 1 

Source: Own Elaboration. 

 

Based on the weights from Tables 1 to 6, the solution matrix was developed, as shown in Equation 1. Variables were assigned to each 

microcontroller: M1 for PIC16F877, M2 for RPi RP2040, M3 for Arduino UNO, and M4 for Arduino Nano 33 BLE.  

 

[

𝑀1
𝑀2
𝑀3
𝑀4

] =  [

0.167 0.5 0 0.33
0.167 0.5 0 0.33

0 0.5 0.167 0.33
0.167 0.5 0.333 0

] ∗ [

0.333
0.333
0.167
0.167

]  (1) 

 

The decision and binary selection method resulted in Equation 2, selecting the RPi RP2040 microcontroller with a weight of 0.5, the highest 

value. 

 

[

𝑀1
𝑀2
𝑀3
𝑀4

] =  [

0.139
0.5

0.083
0.277

]  (2) 

 

The RPi RP2040 demonstrated superior characteristics compared to the other evaluated devices, with significantly lower energy 

consumption, higher processing speed, and storage, while also being economically affordable in the national market. 

 

In software selection, specific features such as the ease of use of open-source libraries, existing documentation, and the developer community 

were considered. A literature review and practical experience led to the use of the TF library. Additionally, Google Colaboratory was employed 

for code execution and neural network model implementation. 

 

b. Development and Quantization of the Neural Network 
 

Three ANN models were executed experimentally, varying the number of convolutional and fully connected layers to compare total 

parameters and metric values: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), model size (SIZE), and R², as shown in Table 

7. 

 
 Table 7: Comparison of Neural Network Model Metrics. 

Model Number Convolutional Layer Fully Connected Layer No. of Parameters MSE RMSE Size (Bytes) R2 

1 1 0 6,657 2,377.63 48.76 222,627 0.96 

2 1 1 2,389 1,939.78 44.04 161,016 0.97 

3 2 1 4,853 2,492.36 49.92 228,983 0.96 

 Source: Own Elaboration. 

 

Considering Table 7, model architecture 2, consisting of one convolutional layer and one fully connected layer, was chosen for its lower 

error values and size, with R² closest to 1. The factors and levels of the experimental design were then identified (Table 8), creating a total of 

180 combinations to measure metrics: accuracy degradation, inference time, energy consumption, and model memory size. 

 
  Table 8: Neural Network Experiment Matrix. 

Factors Levels Metrics 

Types of Quantization 

Without Quantization FP32 

• Accuracy degradation. 

• Inference time. 

• Mode size. 

• Energy consumption. 

Post-training Quantization Weights and INT8 Activation 

Post-training Quantization Weights INT8 and INT16 Activation 

Quantization-aware Training Weights and INT8 Activation 

No. of neurons 1024, 512, 256, 128, 64, 32, 16, 8, 4, and 2 

Kernel size 8x1, 4x1, and 2x1 

Number of filters 64, 32, 16, 8, 4, and 2 

Source: Own Elaboration. 

 

c. Implementation in the Microcontroller 

 

The model's execution code was designed using Python, following this algorithm: 

 

• Libraries for TF and its Keras interface for deep learning, along with mathematical, data manipulation, and graphics libraries, were 

imported. 

• The data was read from an Excel file, preprocessing it by removing unnecessary columns, transposing, and adjusting it for a suitable 

format. 

• A sequence function for training in groups of 10 data points was defined, splitting into feature sequences (all columns except the 

last) and label sequences (the last column). 

• Training and testing subsets were created, extracting 80% for training and 20% for testing. 
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For constructing the CNN model, convolution layers (Conv2D) were imported, specifying the number of filters, kernel size, activation 

function ('relu'), and input shape. Data was reformatted for the first convolution layer, and additional layers included max pooling 

(MaxPooling2D), flattening (Flatten), and a densely connected layer (Dense) with a single output unit and linear activation. Each layer was 

sequentially connected.  

 

The model was trained with the following hyperparameters: number of epochs, batch size, validation data for performance evaluation, and 

early stopping criteria. The 'History' variable stored training process information and epoch metrics for performance visualization. 

 

Quantization techniques were applied post-training: 

 

• Post-training Quantization - Weights and Activation Functions to INT8: The TF model was converted to a TF Lite model without 

quantization to maintain original precision parameters. The representative dataset was selected for model quantization with 8-bit 

integers, and the new quantized model was saved. 

• Post-training Quantization - Weights INT8 and Activation Functions INT16: This technique followed the previous process, 

modifying to 8-bit weights and 16-bit activation functions. 

• Quantization-aware Training - Weights and Activation Functions to INT8: The original model was quantized using TF Model 

Optimization, compiled, and trained for 500 epochs with early stopping criteria. The trained model was converted to TF Lite, 

applying 8-bit integer quantization and specifying TF Lite's integrated operations, selecting the representative dataset for precise 

quantization. 

 

This approach ensured the model ran efficiently on low-power devices while maintaining acceptable prediction accuracy. 

 

d. Model Validation 
 

The stored information in 'History' is used to visualize loss curves during training and to graph them as shown in Figure 1. If losses in both 

the training and validation groups decrease, it indicates good model learning. However, if there's a variation where loss decreases in one group 

and increases in the other, it signifies overfitting. 

 

 
Figure 1: Loss Curve During Training and Validation. 

Source: Own Elaboration. 

 

Subsequently, the real data versus the predicted data are compared, the alignment of the predictions is evaluated, and error metrics between 

the data groups are calculated to quantitatively measure the model's performance in predicting values in the test set. For the radiation prediction 

models, as shown in Figure 2, a number 'n' of time steps is established, in this case with n = 50. 

 
Figure 2: Comparison of Real Data vs Predicted Data for the Last n Time Steps. 

Source: Own Elaboration. 
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After comparing the prediction of the quantized models with the original models, two functions are defined in the code: 'predict_tflite' and 

'evaluate_tflite', to perform inferences and evaluations on a quantized TF Lite (TFLite) model using test data and true labels. The 'predict_tflite' 

function takes a quantized TFLite model and test data as input, prepares the test data, initializes the interpreter, and performs inferences with 

the TFLite model, returning the resulting predictions. 

 

On the other hand, the 'evaluate_tflite' function takes a quantized TFLite model, test data, and true labels, uses the results obtained from the 

'predict_tflite' function, and calculates the loss between the predictions and the true labels using metrics like MSE, RMSE, SIZE, R2, and 

inference time, employing the original model's loss function, and returning the resulting loss value. 

 

The original model evaluates the loss on the test data using the 'evaluate' method. Then, the 'evaluate_tflite' function calculates the loss of 

the TF Lite models, including the original and quantized models. This allows comparison of the performance of different models in terms of 

their ability to fit the test data, where a lower loss value indicates a better model fit. 

 

Finally, the file sizes of each TFLite model are calculated to compare the values obtained with the original TF model size and evaluate their 

storage efficiency. 

 

e. Results Analysis 
 

In validating the neural network model for solar radiation prediction, the corresponding experiments of the possible combinations of factors 

and levels from the proposed experimental design are executed. The data obtained in each experiment are organized as shown in Table 9, where 

the 'Inference Time' metric values are aligned with the model to which they belong, and the degradation proportion compared to the original TF 

model is calculated in percentage. In the following, the three types of quantization applied are referred to as Q1: TF Lite Quantized INT8, Q2: 

TF Lite Quantized INT16x8, and Q3: TF Lite Quantized Aware. 

 

Similarly, the loss values obtained for each metric with the evaluated models and their size are organized in Table 10 and Table 11 

respectively. 

 
      Table 9: Inference Time - Experiment No. 1. 

Model Inference Time Proportion 

TF 0.121 ms 0.00 % 

TF Lite 0.221 ms -82.87 % 

Q1 0.101 ms 16.20 % 

Q2 0.137 ms -13.95 % 

Q3 0.064 ms 46.59 % 

Source: Own Elaboration. 

 
Table 10: Loss Comparison in Each Metric - Experiment No. 1. 

Model MSE MSE Degradation RMSE RMSE Degradation MAE MAE Degradation R2 R2 Degradation 

TensorFlow 2,231.56 0.00 % 47.23 0.00 % 34.58 0.00 % 0.96 0.00 % 

TF Lite 2,231.56 0.00 % 47.23 0.00 % 34.58 0.00 % 0.96 0.00 % 

Q1 2,348.66 -5.24 % 48.46 -2.59 % 35.28 -2.03 % 0.95 0.20 % 

Q2 3,587.16 -60.74 % 59.89 -26.78 % 36.45 -5.42 % 0.93 2.41 % 

Q3 3,026.68 -35.63 % 55.01 -16.46 % 40.53 -17.20 % 0.94 1.41 % 

Source: Own Elaboration. 

 
    Table 11: Model Size Comparison - Experiment No. 1. 

Model Size (bytes) Reduction (bytes) Proportion 

TensorFlow 1,736,899 0 0.00 % 

TensorFlow Lite 532,916 1,203,983 69.31 % 

Q1 136,984 1,599,915 92.11 % 

Q2 138,016 1,598,883 92.05 % 

Q3 141,688 1,595,211 91.84 % 

Source: Own Elaboration. 

 

To determine the best model for implementing solar radiation prediction, the data obtained in each experiment are collected and organized 

in a spreadsheet. This allows for a comprehensive comparison of all quantized TFL models with the original TFL model, evaluating the Root 

Mean Square Error (RMSE), which refers to prediction errors, and the R2 coefficient, indicating inference accuracy. 

 

Three-dimensional graphs show the relationship between the number of neurons, kernel size, the number of filters, and the evaluated metric 

for each quantized neural network model. Thus, Figure 3 presents the RMSE metric data, showing that the Q3 model has more points with low 

RMSE values. Figure 4 presents the R2 metric data, showing that the total points of Q3 present a high R2. Furthermore, Figures 5 and 6 show 

box plots of the models for the RMSE and R2 metrics, where the quantized Q3 model performs similarly to the non-quantized models, while 

the data for Q1 and Q2 differ.  
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   Figure 3: 3D Graph Comparing RMSE Metric. 

   Source: Own Elaboration. 

 

 

 
   Figure 4: 3D Graph Comparing R2 Metric. 

   Source: Own Elaboration. 

 

 
Figure 5: RMSE Metric Distribution by Model. 

Source: Own Elaboration. 

 

 
Figure 6: R2 Metric Distribution by Model. 

Source: Own Elaboration. 

 

Graphically, it is observed that the quantization technique during training (Q3) shows a smaller range of variation compared to the original 

TF and TFL models. Additionally, considering that a lower RMSE value and a value close to one for the R2 coefficient indicate a better model 

fit, it is established that the appropriate quantized ANN model for microcontroller implementation is specified in Table 12. 

 
Table 12: Specifications - Selected Quantized ANN Model 

Experiment No. No. of Neurons in Dense Layer Kernel No. of Filters No. of Parameters RMSE R2 

169 2 4x1 64 1,093 44.24 0.96 

Source: Own Elaboration. 
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With the identified ANN model and using the 'keras_spiking' library, an energy consumption estimate is performed on different processing 

units as shown in Table 13. 

 
     Table 13: Energy Consumption Estimate - Selected Quantized ANN Model. 

Processing Unit Total Energy per Inference (Joule) 

CPU 22.36x10-3 

GPU 410.44x10-3 

ARM 8.60x10-3 

Source: Own Elaboration. 

Finally, Table 14 presents the degradation of the evaluated metrics, and Table 15 presents the inference time and model size in memory. 

 
    Table 14: Metrics Degradation - Selected Quantized ANN Model. 

Model RMSE RMSE Degradation MAE MAE Degradation R2 R2 Degradation 

TF 44.43 0.00 % 32.00 0.00 % 0.96 0.00 % 

Q3 44.24 0.42 % 31.01 3.09 % 0.96 0.03 % 

    Source: Own Elaboration. 

 
     Table 15: Inference Time and Model Size - Selected Quantized ANN Model. 

Model Inference Time Proportion Model Size (bytes) Proportion 

TF 0.12 ms 0.00 % 140,544 0.00 % 

Q3 0.03 ms 77.56 % 6,016 95.71 % 

     Source: Own Elaboration. 

 

 

IV. CONCLUSION 

 
The implementation of quantized ANN models in microcontrollers proves to be a technically and economically viable solution for solar 

radiation prediction. Thanks to quantization, it is possible to run complex predictive models on low-cost, low-power devices, thus democratizing 

advanced prediction technologies in critical applications such as solar energy generation and precision agriculture. 

 

The results highlight that through the applied experimental design, the performance of the quantized neural networks is evaluated in detail, 

observing that the "Tensor Flow Lite Quantized Aware" ANN model is the suitable model for implementing solar radiation prediction, with 

metrics such as RMSE of 44.24 and R2 of 0.96, indicating that the selected quantized model differs from the original non-quantized model by 

less than 0.5 % and 0.04 % respectively in these metrics. 

 

The Tensor Flow Lite Quantized Aware ANN model presents a 95 % reduction in model size and minimal energy consumption, 

demonstrating that quantization achieves significant reductions in memory storage and energy consumption of ANN models without 

compromising performance and prediction efficiency. 
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