Design of a Resilient and Eco-friendly Microgrid for a Commercial Building

Palabras clave: Análisis ambiental, HOMER Grid, Microrred, FV batería, Resiliencia

Resumen

Los desastres naturales recientes, como los huracanes Harvey y María, han causado una gran interrupción en la red eléctrica. Por otra parte, las autoridades gubernamentales se han fijado metas ambiciosas para reducir las emisiones de gases de efecto invernadero. Por lo tanto, existe un interés creciente en hacer que los sistemas de energía eléctrica sean más resilientes y con un impacto mínimo al medio ambiente. En este trabajo, se utilizó el software HOMER Grid para modelar microrredes que se contienen sistemas fotovoltaicos, baterías de ión-litio, generadores de gas natural y la carga eléctrica de un edificio de oficinas que consume un promedio de 2 MWh por día. Se modificaron los tamaños de los componentes para determinar la configuración con el generador más pequeño que pudiera suministrar energía durante un corte de energía de dos días en verano. Se realizaron análisis ambientales y económicos para mostrar las diferencias entre los diferentes objetivos de diseño del sistema. Los resultados indican que la instalación de una microrred en un edificio de oficinas con un arreglo fotovoltaico de 600 kW y una batería de ión-litio de 2.8 MWh puede evitar la emisión de hasta 287 toneladas de CO2 por año. La misma configuración de microrred puede soportar un apagón de dos días durante la mayor demanda eléctrica en la temporada de huracanes sin la necesidad de un generador de respaldo. Las microrredes jugarán un papel importante en la transición a una red inteligente porque proporcionan energía confiable, hacen que el sistema sea más tolerante a fallas de la red y permiten una alta penetración de energía renovable en la red eléctrica, lo que en consecuencia reduce el impacto ambiental.

Citas

H. Aki, “Demand-Side Resiliency and Electricity Continuity: Experiences and Lessons Learned in Japan,” Proc. IEEE, vol. 105, no. 7, pp. 1443–1455, 2017.

D. Yates et al., “Stormy Weather. Assessing Climate Change Hazards to Electric Power Infrastructure: A Sandy Case Study,” IEEE Power & Energy Magazine, vol. 12, no. 5, pp. 66–75, 2014.

R. Kemp, “Electrical system resilience: A forensic analysis of the blackout in Lancaster, UK,” Proc. Inst. Civ. Eng. Forensic Eng., vol. 170, no. 2, pp. 100–109, 2017.

A. Kwasinski, F. Andrade, M. J. Castro-Sitiriche, and E. O’Neill-Carrillo, “Hurricane Maria Effects on Puerto Rico Electric Power Infrastructure,” IEEE Power Energy Technol. Syst. J., vol. 6, no. 1, pp. 85–94, 2019.

X. Pan, M. den Elzen, N. Höhne, F. Teng, and L. Wang, “Exploring fair and ambitious mitigation contributions under the Paris Agreement goals,” Environ. Sci. Policy, vol. 74, pp. 49–56, 2017.

Unites States Environmental Protection Agency, “Overview of Greenhouse Gases,” 2020. [Online]. Available: https://www.epa.gov/ghgemissions/overview-greenhouse-gases. [Accessed: 04-Sep-2020].

T. Simpkins, K. Anderson, D. Cutler, and D. Olis, “Optimal sizing of a solar-plus-storage system for utility bill savings and resiliency benefits,” in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2016, pp. 1–5“Optimal sizing of a solar-plus-storage system for utility bill savings and resiliency benefits,” in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN: IEEE, 2016, pp. 1–5.

K. Anderson, N. A. DiOrio, D. S. Cutler, and R. S. Butt, “Increasing Resiliency Through Renewable Energy Microgrids,” Int. J. Energy Sect. Manag., vol. 2, no. 2, pp. 1–16, 2017.

K. Anderson et al., “Quantifying and monetizing renewable energy resiliency,” Sustainability, vol. 10, no. 4, p. 933, 2018.

N. D. Laws, K. Anderson, N. A. DiOrio, X. Li, and J. McLaren, “Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings,” Renew. Energy, vol. 127, pp. 896–909, 2018.

A. Lagrange, M. de Simón-Martín, A. González-Martínez, S. Bracco, and E. Rosales-Asensio, “Sustainable microgrids with energy storage as a means to increase power resilience in critical facilities: An application to a hospital,” Int. J. Electr. Power Energy Syst., vol. 119, p. 105865, 2020.

E. Rosales-Asensio, M. de Simón-Martín, D. Borge-Diez, J. J. Blanes-Peiró, and A. Colmenar-Santos, “Microgrids with energy storage systems as a means to increase power resilience: An application to office buildings,” Energy, vol. 172, pp. 1005–1015, 2019.

J. Faraji, M. Babaei, N. Bayati, and M. A. Hejazi, “A comparative study between traditional backup generator systems and renewable energy based microgrids for power resilience enhancement of a local clinic,” Electronics, vol. 8, no. 12, p. 1485, 2019.

T. M. Azerefegn, R. Bhandari, and A. V. Ramayya, “Techno-economic analysis of grid-integrated PV/wind systems for electricity reliability enhancement in Ethiopian industrial park,” Sustain. Cities Soc., vol. 53, p. 101915, 2020.

C. Bastholm and F. Fiedler, “Techno-economic study of the impact of blackouts on the viability of connecting an off-grid PV-diesel hybrid system in Tanzania to the national power grid,” Energy Convers. Manag., vol. 171, pp. 647–658, 2018.

S. U. Rehman, S. Rehman, M. Shoaib, and I. A. Siddiqui, “Feasibility Study of a Grid-Tied Photovoltaic System for Household in Pakistan: Considering an Unreliable Electric Grid,” Environ. Prog. Sustain. Energy, vol. 38, no. 3, pp. 1–8, 2019.

A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. F. Mohammed, and M. A. M. Ramli, “Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq,” Energy, vol. 191, p. 116591, 2020.

F. Tooryan, A. Shadman, S. Kamalinia, and E. R. Collins, “Techno-Economic Analysis and Power Management for Remote Area Microgrid,” in Clemson University Power Systems Conference (PSC), 2020, pp. 1–6“Techno-Economic Analysis and Power Management for Remote Area Microgrid,” in Clemson University Power Systems Conference (PSC), Clemson, SC: IEEE, 2020, pp. 1–6.

R. Mehta, “A Microgrid Case Study for Ensuring Reliable Power for Commercial and Industrial Sites,” in IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 2019, pp. 594–598“A Microgrid Case Study for Ensuring Reliable Power for Commercial and Industrial Sites,” in IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand: IEEE, 2019, pp. 594–598.

D. T. Ton and M. A. Smith, “The U.S. Department of Energy’s Microgrid Initiative,” Electr. J., vol. 25, no. 8, pp. 84–94, 2012.

C. Schwaegerl and L. Tao, “What is a Microgrid?,” in Microgrids Architectures and Control, 1st ed., N. Hatziargyriou, Ed. Chichester, UK: John Wiley & Sons Ltd, 2014, pp. 1–24.

H. Farhangi, Smart Microgrids : Lessons from Campus Microgrid Design and Implementation, 1st ed. Taylor & Francis Group, 2016.

A. Faruqui and C. Bourbonnais, “The Tariffs of Tomorrow: Innovations in Rate Designs,” IEEE Power & Energy Magazine, vol. 18, no. 3, pp. 18–25, 2020.

R. Hledik, “Rediscovering Residential Demand Charges,” Electr. J., vol. 27, no. 7, pp. 82–96, 2014.

J. Shen, C. Jiang, Y. Liu, and J. Qian, “A Microgrid Energy Management System with Demand Response for Providing Grid Peak Shaving,” Electr. Power Components Syst., vol. 44, no. 8, pp. 843–852, 2016.

L. Zhou, Y. Zhang, X. Lin, C. Li, Z. Cai, and P. Yang, “Optimal sizing of PV and bess for a smart household considering different price mechanisms,” IEEE Access, vol. 6, pp. 41050–41059, 2018.

R. Garmabdari, M. Moghimi, F. Yang, E. Gray, and J. Lu, “Multi-objective energy storage capacity optimisation considering Microgrid generation uncertainties,” Int. J. Electr. Power Energy Syst., vol. 119, no. February, p. 105908, 2020.

A. Kadri and K. Raahemifar, “Optimal Sizing and Scheduling of Battery Storage System Incorporated with PV for Energy Arbitrage in Three Different Electricity Markets,” in IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–6“Optimal Sizing and Scheduling of Battery Storage System Incorporated with PV for Energy Arbitrage in Three Different Electricity Markets,” in IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada: IEEE, 2019, pp. 1–6.

M. H. Roos, D. A. M. Geldtmeijer, H. P. Nguyen, J. Morren, and J. G. Slootweg, “Optimizing the technical and economic value of energy storage systems in LV networks for DNO applications,” Sustain. Energy, Grids Networks, vol. 16, pp. 207–216, 2018.

W. L. Schram, I. Lampropoulos, and W. G. J. H. M. van Sark, “Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential,” Appl. Energy, vol. 223, pp. 69–81, 2018.

A. Mariaud, S. Acha, N. Ekins-Daukes, N. Shah, and C. N. Markides, “Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings,” Appl. Energy, vol. 199, pp. 466–478, 2017.

Y. Li and J. Wu, “Optimum Integration of Solar Energy With Battery Energy Storage Systems,” IEEE Trans. Eng. Manag., vol. (in press), 2020.

J. Liu, X. Chen, H. Yang, and Y. Li, “Energy storage and management system design optimization for a photovoltaic integrated low-energy building,” Energy, vol. 190, p. 116424, 2020.

A. Sharma and M. Kolhe, “Techno-economic evaluation of PV based institutional smart micro-grid under energy pricing dynamics,” J. Clean. Prod., vol. 264, p. 121486, 2020.

M. B. Roberts, A. Bruce, and I. MacGill, “Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings,” Appl. Energy, vol. 245, pp. 78–95, 2019.

A. A. Eras-Almeida, M. A. Egido-Aguilera, P. Blechinger, S. Berendes, E. Caamaño, and E. García-Alcalde, “Decarbonizing the Galapagos Islands: Techno-economic perspectives for the hybrid renewable mini-grid Baltra-Santa Cruz,” Sustainability, vol. 12, no. 6, p. 2282, 2020.

M. A. Mohamed, T. Chen, W. Su, and T. Jin, “Proactive Resilience of Power Systems against Natural Disasters: A Literature Review,” IEEE Access, vol. 7, pp. 163778–163795, 2019.

HOMER Energy by UL, “HOMER Grid. Intelligently Reduce Demand Charges with HOMER Grid,” 2020. [Online]. Available: https://www.homerenergy.com/products/grid/. [Accessed: 30-Jun-2020].

U.S. Energy Information Administration, “Average Price of Electricity to Ultimate Customers by End-Use Sector,” 2020. [Online]. Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a. [Accessed: 01-Sep-2020].

U.S. Energy Information Administration, “Delaware State Profile and Energy Estimates,” 2019. [Online]. Available: https://www.eia.gov/state/?sid=DE#tabs-4. [Accessed: 02-Sep-2020].

U.S. Energy Information Administration, “Delaware Electricity Profile 2018,” 2020. [Online]. Available: https://www.eia.gov/electricity/state/delaware/index.php. [Accessed: 31-Aug-2020].

M. Deru et al., “U.S. Department of Energy commercial reference building models of the national building stock,” Technical Report NREL/TP-5500-46861, 2011. [Online]. Available: https://www.nrel.gov/docs/fy11osti/46861.pdf.

Office of Energy Efficiency & Renewable Energy (EERE), “Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States,” 2013. [Online]. Available: https://openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states. [Accessed: 31-Aug-2020].

Folsom Labs, “HelioScope. The new standard in solar design software,” 2020. [Online]. Available: https://www.helioscope.com/. [Accessed: 30-Jun-2020].

HOMER Energy, “Modified Kinetic Battery Model,” 2017. [Online]. Available: https://www.homerenergy.com/products/grid/docs/1.7/modified_kinetic_battery_model.html. [Accessed: 31-Aug-2020].

L. Goldie-Scot, “A Behind the Scenes Take on Lithium-ion Battery Prices,” BloombergNEF, 2019. [Online]. Available: https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/. [Accessed: 19-Jun-2020].

W. Cole and A. W. Frazier, “Cost Projections for Utility-Scale Battery Storage Cost Projections for Utility- Scale Battery Storage,” 2019.

M. Woodhouse, B. Smith, A. Ramdas, and R. Margolis, “Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap,” 2019.

Lazard, “Lazard’s Levelized Cost of Storage Analysis,” 2018. [Online]. Available: https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf.
Publicado
2021-01-01
Cómo citar
Sepúlveda-Mora, S., & Hegedus, S. (2021). Design of a Resilient and Eco-friendly Microgrid for a Commercial Building. Aibi Revista De investigación, administración E ingeniería, 9(1), 8-18. https://doi.org/10.15649/2346030X.919
Sección
Artículos de Investigación