Guía de vórtices bajo una fuerza de Lorentz.

Autores/as

  • C. A. Aguirre Universidade Federal de Mato-Grosso.
  • Q. Martins Universidade Federal de Mato-Grosso.
  • José José Barba-Ortega Universidad Nacional de Colombia.

DOI:

https://doi.org/10.15649/2346030X.666

Palabras clave:

magnetización, mesoscopia, ginzburg landau, superconductor

Resumen

En el presente trabajo estudiamos el efecto que la calidad metálica de los contactos por los que se aplica una corriente externa, tiene sobre las propiedades magnéticas de una muestra superconductora. Analizamos la magnetización, la susceptibilidad magnética y la densidad de pares de Cooper en función del campo magnético aplicado. Los contactos se simulan utilizando el parámetro

Biografía del autor/a

C. A. Aguirre, Universidade Federal de Mato-Grosso.

Universidade Federal de Mato-Grosso, Brasil

Q. Martins, Universidade Federal de Mato-Grosso.

Universidade Federal de Mato-Grosso, Brasil

José José Barba-Ortega, Universidad Nacional de Colombia.

Universidad Nacional de Colombia, Colombia

Referencias

J. Barba-Ortega, E. Sardella y J. Albino-Aguiar, "Superconducting boundary conditions for mesoscopic circular samples, Supercond. Sci. Technol. 24, 015001, 2011.

C. Aguirre, M.R. Joya, J. Barba-Ortega, "Effect of anti-dots on the magnetic suscepti- bility in a superconducting long prisma", J. Low Temp. Phys. 186, 250, 2017.

P.G. de Gennes y J. Matricon, "Collective modes of vortex lines in superconductors of the second kind", Rev. Mod. Phys. 36, 45, 1964.

L. Komendova, M.V. Miloševic, A.A. Shanenko y F.M. Peeters, "Different length scales for order parameters in two-gap superconductors: extended Ginzburg-Landau theory", Phys. Rev. B 84, 064522, 2011.

N.V. Orlova, A.A. Shanenko, M.V. Miloševic ́, F.M. Peeters, A.V. Vagov y V.M. Axt, "Ginzburg-Landau theory for multiband superconductors: microscopic derivation", Phys. Rev. B 87, 134510, 2013.

B. Xu, M.V. Miloševic y F.M. Peeters, "Calorimetric properties of mesoscopic super- conducting disks, rings, and cylinders", Phys. Rev. B 81, 064501, 2010.

A.V. Silhanek, L. Van Look, S. Raedts, R. Jonckheere y V.V. Moshchalkov, "Guided vortex motion in superconductors with a square antidot array", Phys. Rev. B 68 (2008).

A. Van-Blaanderen, R. Ruel y P. Wiltzius, "Template directed colloidal crystallization", Nature, 385, 321, 1997.

J. Barba, E. Sardella y R. Zadorosny, "Influence of the deGennes extrapolation parameter on the resistive state of a superconducting strip", Phys. Lett. A 382, 215, 2018.

I.N. Askerzade, "Numerical simulation of vortex nucleation in the two-band Ginzburg-Landau model", Tech, Phys., 55, 896, 2010.

X. Wang, S.R. Ghorbani, S.I. Lee, S.X. Dou, C.T. Lin, T.H. Johansen, K .H. Müller, Z. X. Cheng, G. Peleckis, M. Shabazi, A.J. Qviller, V. . Yurchenko, G.L. Sun y D.L. Sun, "Very strong intrinsic flux pinning and vortex avalanches in (Ba,K)Fe_2 As_2 superconducting single crystals", Phys. Rev. C 82 (2010) 024525.

T. Golod, A. Rydh, y V.M. Krasnov, "Detection of the phase shift from a single Abrikosov vortex", Phys. Rev. Lett. 104, 227003, 2010.

E.D. Gulian, G.G. Melkonyan y A.M. Gulian, "Directed motion of vortices and annihi- lation of vortex/antivortex pairs in finite gap superconductors via hot lattice", Phys. Lett. A 381, 2181, 2017.

D. Castelvecchi, "Quantum computers ready to leap out of the lab in", Nature 541 9, 2017.

R. Zadorosny, E.C.S. Duarte, E. Sardella, W.A. Ortiz, "Vortex/antivortex annihilation in mesoscopic superconductors with a central pinning center", Physica, C 503, 94, 2014.

G.R. Berdiyorov, A.D. Hernández-Nieves, M.V. Miloševic ́, F.M. Peeters y D. Dominguez, "Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic Type-I superconductor", Phys. Rev. B 85, 092502, 2012.

Q. Du, "Numerical approximations of the Ginzburg-Landau models for superconductivity", J. Math. Phys. 46, 095109, 2005.

M.P. Sørensen, N.F. Pedersen y M. Ögren, "The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the time dependent Ginzburg- Landau model", Physica C 533, 40, 2017.

R. Wördenweber, E. Hollmann, J. Schubert, R. Kutzner y A.K. Ghosh, "Vortex motion in high Tc films and a micropattern induced phase transition", Physica C 470, 835–839, 2010.

C. Aguirre, H. Blas y J. Barba-Ortega, "Mesoscale vortex pinning landscapes in a two component superconductor", Physica C 558, 8, 2018.

C.A. Aguirre, Q. Martins y J. Barba-Ortega, "Analytical development of Ginzburg- Landau equations for superconducting thin film in presence of currents", Rev. UIS Ing. 18 (2), 213, 2013.

C.A. Aguirre, M.R. Joya y J. Barba-Ortega, "Dados como centro de anclaje topológico en una muestra superconductora, Rev. UIS Ing. 19 (1), 109, 2020.

L. Salasnich, A.A. Shanenko, A. Vagov, J. Albino Aguiar y A. Perali, "Screening of pair fluctuations in superconductors with coupled shallow and deep bands: A route to higher-temperature superconductivity", Phys. Rev. B 100, 064510, 2019.

E. Marchiori, J, Peter-Curran, K. Jangyong, N. Satchell, G. Burnell y S.J. Bending, "Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures", Scientific Reports, 7 (2017) 45182.

Descargas

Publicado

01/01/2020

Cómo citar

[1]
C. A. . Aguirre, Q. . Martins, y J. J. . Barba-Ortega, «Guía de vórtices bajo una fuerza de Lorentz»., AiBi Revista de Investigación, Administración e Ingeniería, vol. 8, n.º 1, pp. 101–106, ene. 2020.

Número

Sección

Artículos de Investigación

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a