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ABSTRACT

The separation of  color points is one of  the important issues in 
computational geometry, which is used in various parts of  science; 
it can be used in facility locating, image processing and clustering. 
Among these, one of  the most widely used computational geometry 
in the real-world is the problem of  covering and separating points 
with rectangles. In this paper, we intend to consider the problem 
of  separating the two-color points sets, using three rectangles. In 
fact, our goal is to separate desired blue points from undesired red 
points by three rectangles, in such a way that these three rectan-
gles contain the most desire points. For this purpose, we provide a 
metaheuristic algorithm based on the simulated annealing method 
that could separates blue points from input points, , in time order 
O (n) with the help of  three rectangles. The algorithm is executed 
with C# and also it has been compared and evaluated with the op-
timum algorithm results. The results show that our recommended 
algorithm responses is so close to optimal responses, and also in 
some cases we obtains the exact optimal response.

Diseño de un algoritmo de minería metaheurístico para separar 
puntos de dos colores en un entorno bidimensional
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1. INTRODUCTION

In computational geometry, a geometric model 
is presented as a branch of  design and analysis. 
This branch of  science is actually a combination 
of  geometry and computer that has many uses 
in various majors such as computer graphics, 
geographic information systems, integrated circuit 
design, statistics, machine vision and robotics [1].

In this major, the separation of  color points is 
considered as one of  the most important and widely 
used computational geometry.

So far, numerous studies have been carried out with 
different shapes such as circle, rectangle and square 

[2]. In this study, we focused on the separation of  
color points with three rectangles. In order to solve 
this problem, we intend to introduce a metaheuristic 
algorithm based on Simulated Annealing (SA) 
algorithm, evaluating its results and comparing it 
with the optimal algorithm.

2. STATEMENT OF THE RESEARCH 
PROBLEM

In the covering problems, a set of  geometric objects 
such as a point, a line segment, and a circle are 
covered by one or more geometric objects such as a 
circle, rectangle, square, and a triangle. As shown, in 
Figure 1, covering the points of  a page is represented 
by a rectangle.

Figure 1: covering the page points by a rectangle

From a basic perspective, it is assumed that all 
given points are indistinguishable from each other. 
Consequently, the purpose of  this view is to cover 
the geometric shape in all directions so that, the 
criterion such as the area or perimeter of  the shape 
become minimum. This issue is known as the full 
coverage issue, but due to limitation of  resources 
in the real-world, full coverage may not always be 
possible. According to these cases, the problem 
of  full coverage and optimal coverage by different 
geometric shapes has been widely studied [3].	

In another perspective on the coverage problems, 
it is assumed that the points are not of  the same 

quality. More precisely, in this view it is assumed 
that some of  the given points are desirable and the 
rest of  the points are undesirable. Therefore, in this 
case, the goal is to separate the desired and undesired 
points from each other. This approach is known as 
the separation problem, and the geometric shape in 
this matter is called the separator.

It is assumed that there are a set of  points with two 
different colors on the page, so that the points with 
a certain color, representing the desired points and 
points with other colors, represent undesired points 
[4]. In Figure 2, the separation of  blue and red points 
is represented.
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Figure 2: separating two-color points by a rectangle

A variety of  research has been done to separate 
two-color points using a rectangle. The blue and 
red points may be located on the page, which their 
complete separation is not possible by a rectangle or 
two rectangles and therefore it is necessary to use 
three rectangles. 

The issues related to the separation of  points with 
geometric shapes, have many diversity and they were 
shown in a completely different issue with just a 
slightest change. Examining the largest or smallest 
rectangle separator, finding the largest empty 
rectangle of  points, separating points with more 

than two colors, and separating points with more 
than one rectangle, are some of  these issues. In this 
matter, it is assumed that there are a number of  points 
with two colors of  blue and red, in the 2d space of  
R2, and the main goal is to find the smallest three 
rectangles that can cover the most blue points in this 
space. In other words, all the blue points may either 
be located inside the rectangle or at the boundaries 
of  these three rectangles, while all the red points 
are outside of  the three rectangles or located at the 
boundaries. Figure 3 shows three rectangles covering 
the blue points.

Figure 3:  the three rectangles contains blue points as much as possible, and red points are outside them.

3. DESCRIPTION OF THE SIMULATED 
ANNEALING (SA)

Simulated Annealing Algorithm is a simple and 
effective metaheuristic optimization algorithm 
for solving optimization problems in large search 
domains. In fact, this Algorithm applies to issues 
that finding an approximate response for general 
optimization, is more important than finding a precise 
response to local optimum at a limited and specific 
time [5]. The gradual Annealing technique is used by 

metallurgists to achieve a state in which the solid is 
well-developed and its energy is minimized. The goal 
is to maximize crystalline size in the solid state of  the 
Annealing substance. This technique involves placing 
the material at high temperature and then gradually 
reducing the aforementioned temperature. In fact, 
gradual and slow Annealing in this algorithm can be 
considered as a gradual reduction in the possibility 
of  choosing worse responses when searching in the 
response space. In Figure 4, the general schema has 
been shown.
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Figure 4: The schema of  a region includes peaks and valleys where the ball can leap into different parts.

In this case, the goal is to place the ball in the deepest 
valley (highest level of  energy) of  the area shown in 
Figure 4, but the location is known. To do this, first 
we allow the ball to be thrown into different areas 
with a high radius. This is done in SA by choosing 
large values ​​of  the neighborhood radius. The ball 
after throwing, naturally will go down to the areas 
containing the valley; But since this may not be the 
deepest valley, then the ball must be allowed to be 
mutated from this state and be thrown again.

This will continue to make sure that the ball is finally 
at the deepest part of  the valley for once. To keep the 
ball in the desired area, we must decrease the ball’s 
permission to throw over time. Also, the probability 
of  a ball falling to areas with higher heights (out of  
the valley) must reduce.

Similarly, in the SA algorithm, the radius of  the 
neighborhood is initially large and, as a result, 
different values ​​of  the solution space were chosen. 
Also, by choosing a high temperature parameter, it 
is also possible to go to high energy states, but over 
time, the neighboring radius is reduced, and as a 
result, the selected values ​​of  the response space are 
slightly different than each other, so by decreasing 
the temperature, the probability of  going to higher 
energy states is reduced. Consequently, in the initial 
steps, by choosing a large neighborhood radius and 
the probability of  going up to the worse moves, 
the probability of  getting caught in the maximum 

or minimum points of  the locality decreases. Also, 
in the lower steps, with decrease in the neighboring 
radius, and considering that all the points were 
randomly searched (a number of  points are in their 
optimal points, or close to it) they reach a general 
optimal point and stay in it. In general, metaheuristic 
SA algorithm uses neighbors with same answers, to 
search for the space of  the answers. This algorithm 
can achieve the best possible answer by spending a 
sufficient time.

The probability of  a transition from the current 
state such as s, to a new candidate state, such as 
as ( . ′ . ) , is also determined by a probability 
function as  in which e = E (s) and ′ = E ( ′S ) (The 
E function is the energy state of  the space and T 
represents the variable temperature with the system 
time).

Lower energies are better than those with higher 
energies. Also the probability function of  P should 
be positive, even when 𝑒𝑒  is smaller than ′. This 
feature ensures that the algorithm does not get 
caught in a local response.

When T asks for zero, the P probability must either 
be zero (e smaller than ′) or be a positive number 
( ′ smaller than e). For values ​​that are enough small-
er than T, the system moves to the point of  mini-
mum energy. It should be noted that by placing T = 
0, the issue is trimmed into a greedy algorithm, and 
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its moves will only be towards the points with less 
energy.

In the initial case of  Simulated Annealing (SA), 
when ′ is smaller than e, the probability  ( . ′ . )
is equal to 1, which means that the procedure always 
moves to lower points, independently from tempera-
ture. Although this condition is not required for the 
operation of  the method, many of  its simulation 
and implementations are considered as part of  the 
definition of  the method. The function P is always 
chosen so that the probability of  accepting a motion 
(when the difference between two modes is low) is 
reduced. For example, small upward moves are more 

likely than large moves. With these status, it’s clear 
that temperature plays a crucial role in controlling 
changes in the system (due to its sensitivity to energy 
changes). More precisely, in large T values, changes 
in system state are more sensitive to larger changes 
in the system rather than when the temperature is 
smaller.

The overall structure of  the Simulated Annealing 
algorithm and its stages are briefly shown in Figure 
5. As shown, the SA algorithm has two repetition 
chains, the first chain responsible for finding local 
responses at any temperature and the second chain is 
responsible for the reduction of  temperature.

Figure 5: Flowchart Simulated Annealing algorithm.
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The flowchart shows the simplest form of  the SA 
algorithm and its stages are as follows: 

•	 Choose initial guesses or tricks (X) randomly.
• 	 Generate random new answer or neighbor’s 

answer (Y) from the initial answer. 
• 	 Energy comparison of  initial response (X) with 

neighbor’s response (Y).

If  the energy difference is negative (ΔE <0), or 
in other word the energy of  the new answer (Y) 
is less and better than the initial answer (X),  then 
the answer (Y) is accepted as the current answer; 
otherwise, if  the answer (Y) is More and worse 
than the initial answer (X), then the answer (Y) is 
accepted as probable. It means that, first, a random 
number is generated between zero and one; if  this 
number is smaller and better than −ΔE

KT  e , the new 
answer (Y) is selected; Otherwise it is not accepted 
and the answer of  a new neighbor is selected. If  the 
algorithm has reached the final temperature, it goes 
to the next stage, otherwise it remains at the same 
temperature and tries to find the next answer by re-
processing from the current answer. It ends, when 
the conditions and criteria for termination of  the 
algorithm are established; otherwise, the temperature 
is reduced and a new answer is produced again.

4. RESEARCH BACKGROUND

The issue of  finding the minimum circle, was raised 
by Sylvester in 1857 [6]. The most basic method 
solve the problem by examining all possible states 
at time O (n4). Over time, algorithms were proposed 
to resolve this problem, all of  which tried to reduce 
the execution time of  this algorithm. In 1975, an 
algorithm with time order O (nlogn) was proposed to 
solve this problem and then proceeded to optimum 
time O (n), with the help of  a linear programming 
method [7]. The problem is to find the smallest 
rectangle parallel to the x-axis, which covers exactly 
n points of   P, and solved by the agraval [8] at time 
O(k2 nlogn), Epstein [9] at time  O(n2) and Segal M. 
and Kedem K. [7] At time O(n+k (n-k)2).

In 1994 optimal cover was proposed by Epstein and 
Arisan, using a fixed-size rectangular and coordinate 
axes [10] and presented algorithmic with time order   
O(k2 nlogn) to solve this problem.

In another version of  the cover problem, which is 
called optimum coverage or more precisely called 
maximal coverage, it is assumed that a set of  n 
points in a page and a fixed-dimensional geometry is 
given and the goal is to put this shape on the page in 
a way that covers maximum number of  points. This 
problem has been proposed using different geomet-
ric shapes; Problems such as minimum area enclos-
ing using a circle [11], minimum area enclosing using 
a fixed-dimensional rectangle and coordinate axes [12] 
and optimal coverage using a convex polygon [13].

In 2009, the problem of  covering the points with 
two Isothetic rectangles was defined by Saha and 
Dos [5]. A set of  n points in the page is covered by 
two Isothetic rectangles at any arbitrarily orientation. 
This algorithm, at the time O(n3) can be used to solve 
another well-known optimization problem. This 
issue is to cover points with two Isothetic rectangles, 
which gain the minimum area of  the two rectangles 
at any arbitrarily orientation.

Eckstein et al. [12] examined the issue of  separation in 
a set of  points with a rectangle, so that none of  the 
red points located inside the separators rectangle. In 
addition, the number of  blue points inside the rect-
angular cover is maximized. They showed that this is 
an NP-hard problem.

In 2013, Afsane Halatabadi Farahani [1] presented a 
heuristic algorithm for separation of  color points 
with two circles, which answers at the time of  O (n). 
In same year, Sarah Khalafi et al [13] proposed a solu-
tion to separate points with the largest single-color 
polygon were at time O (nlogn) the separation of  
points will be done.

In the year 2012, Zahra Moslehi et al. [14] proposed an 
algorithm for separating the set of  two-color points 
with two indistinguish and isothetic rectangles. They 
took two sets of  blue and red points with a total size 
of  n in order to report all orientation of  the two 
isothetic separator with empty and non-empty inter-
sections, so that all the blue points were located in-
side the rectangles or all the red points were located 
outside them. These two states are solved with time 
order O (n2(n)) and O (n2 logn) respectively.
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5. THE PROPOSED METHOD

In this section the proposed algorithm were outlined 
in order to separate the two blue and red points 
with three rectangles. This algorithm is not limited 
to the number of  rectangles and can be used to 

solve various problems, arbitrarily. the assume is that 
the blue and red points are located in a given two-
dimensional (2d) space, and dispersed in this space 
without any restrictions on the location. Figure 6 
shows an example of  dispersion of  two-color points 
in 2d space.

Figure 6: Probable mode of  dispersion of  two-color points in 2d space.

The points that are located inside the area are 
considered as internal points, and points that are 

not inside the area of  any rectangle, are considered 
as external points. Rectangles are not necessarily 
separate and may overlap (Fig 7).

Figure 7: Deploying of  three rectangles with overlapping regions in two-dimensional space

The Desired C onfiguration of  algorithm is placement 
of  the maximum number of  blue points and the 
minimum number of  red points in the rectangle, so 
we need to define an Objective function, which, our 
desirable mode is the minimum of  that (Formula 
1) and use a minimizing algorithm of  Objective 
function. In this research we have used the Simulated 
Annealing algorithm (SA). The system energy (E) is 
calculated in a given state (s) as follows:

( ) = −  				    (1)

Where nRed and nBlue are the number of  red points and 

the number of  points in the rectangles, respectively. 
Therefore, the optimal mode is s* that the rectangles 
contain most of  the blue points and the minimum 
points of  the red, which corresponds to the mini-
mum energy of  the system. If  the blue points are 
equal to n and the number of  rectangles is m=3, and 
each of  the blue points can be located in one of  the 
following 4 states (m + 1 = 4):

• state 0: not in any rectangle
• state 1: Inside rectangular No. 1
• state 2: Inside the rectangle No. 2
• state 3: Inside the rectangle No.3
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Each blue point is randomly positioned in one of  
the states and by storing the position of  each point 
in the rectangular data structure, we consider the 
maximum and minimum values ​​of  x and y of  the 
blue points and draw the sides of  the rectangles. In 
fact, rectangles are drawn by blue points. Therefore, 
the system state (s) can be shown by an array with 
length of  n representing numbers 0 to m, that m 
indicating the number of  rectangles. For example, if  

there are 10 blue points (n = 10), the state of  the 
system can be considered as arrays in table 1. This 
array from left to right shows that point number 1 
is not inside any rectangles. Points 2, 4, and 10 are 
in rectangle 1; points 5, 6 and 9 in rectangle 2 and 
points 3 and 7 are also in rectangle 3. As a result, this 
array can be used to generate different states of  the 
system.

Table 1: a possible state (s) for 10 blue points and 3 rectangles

1  2 0 3 2 2 1  3 1  0 

In the next step, the red point’s status is checked with 
rectangles, and by comparing the coordinates of  the 
red points with the coordinates of  the rectangle, 
it is determined that which points are inside the 
rectangles and which ones are outside. Finally, 
the system’s energy is obtained by calculating the 
difference of  red points inside the rectangles with 
blue points inside the rectangles (Formula 1). If  
there are fewer red points inside the rectangle, the 
value of  the Objective function becomes lower and 
closer to the optimal value (in some cases the optimal 
response is achieved).

To move from the current state of  system to a 
neighboring state, in accordance with simulated 
annealing theory, the changes should be gradual 
and irreversible. To create a new neighbor from the 
current state, we first select a point randomly, then 
change the value of  this point randomly; and by 
changing the position of  the points on the page, the 
new rectangle will be traced by the new coordinates 
of  the blue points. Table 2 shows a random and 
reversible change to generate a new neighbor. In this 
change, the fourth point is assumed to be outside of  
all rectangles.

Table 2: Random and reversible Change to generate a new neighbor.

1  2 0 3 2 2 1  3 1  0 

1  2 0 3 2 2 0 3 1  0 

After the states of  all points are identified, the points in 
a particular rectangle define the rectangle’s boundaries. 
That is, the leftmost, rightmost, highest and lowest 
points in each rectangle, indicate the boundaries 
of  the left, right, up and down, respectively. The 
coordinates of  the red points are also examined with 
new rectangles, and it is determined that each one is 
located inside or outside of  the rectangle. Finally, the 
system’s Objective function is recalculated and the 
differences in red and blue points are obtained. If  
the energy of  neighboring state, is less than energy 
of  the initial system state, the new neighboring state 
is considered as the current mode; otherwise, the 
algorithm accepts the answer with the probability of  

−ΔE
T  ( (, as the current answer. In this regard, the ΔE 

is the difference between the Objective function of  
the current answer and the answer of  the neighbor; 
also the T represents the temperature. At each 
temperature, several repetitions are performed, 
and then the temperature is gradually reduced. In 
the initial steps, the temperature is very high, so it 
is more likely to accept worse answers. With the 
gradual reduction of  temperature in the final steps, 
there is less chance to accept worse answers, and so 
the algorithm converges to an optimal response. The 
P seudo-code for our proposed algorithm, which is 
executed based on the simulated annealing algorithm, 
is shown in Table 3.
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Table 3: Steps of  the proposed algorithm

The Objective function (System energy) is calculated: E_current

To calculate the Objective function, the blue and red points condition is checked and the number of  red and blue points 
inside the rectangles, is counted. The target function is calculated using Formula 1. The best Objective function is obtained 
(E* = E_current) and the corresponding state is stored: S* = S_current

To generate the new neighbor state, (S_new), one of  the array indexes from (1.2.....n) is randomly selected and changed 
in random form. Of  course, to generate a neighboring state, the blue point does not change, and only its status changes 
and is randomly determined to be outside of  the rectangles or inside other rectangles. In the neighboring state, one of  the 
rectangles is changed, so the neighbor state is the same as the previous one.

The Objective function (System energy), E_new is calculated for the new random state.

To calculate the Objective function of  neighboring mode, the status of  blue and red points is checked and the number of  
red and blue points is counted inside the rectangles.

If  the new state is adopted, the energy and current state will be updated:

 Ecurrent=Enew  ؛     Scurrent=Snew

To find the best answer, the condition Ecurrent<E* is checked and if  it is established

 E*=Ecurrent  و S*=Scurrent are considered.

Temperature reduction:

The SA algorithm is simulated by reducing the temperature and gradually annealing the system. A gradual annealing is 
considered as linear reduction with linear rate: T=T-δT

Convergence condition test: If  the Objective function reaches the minimum possible value, the algorithm has reached the 
final answer and it goes to the next stage.

Stop condition check: The algorithm goes to the next step if  it reaches the maximum number of  iterations. The maximum 
iterations in the SA algorithm are also equivalent to reaching the minimum temperature. If  the T < Tmin it shows that the 
system has cooled over that it can change the situation; and the condition is set to stop.
 
In case of  not reaching one of  the above conditions, the algorithm will go to the next stage, otherwise it will also go to 
step 5.

The best answer found means that S* (corresponding to the lowest value of  the objective function, E*) is reported.

the end

begin
 

1
 

Coordinates of the blue and red points are stored  2

3

4

5

6

7

8

9

10

11

12

 

Accepting new state will be checked as follows:
 The energy difference ∆E = Enew-Ecurrent  is calculated and accepted by the following conditions:
If  ΔE <0, the new state is accepted.
If  ΔE> 0, the new state is accepted with the probability of                     . For this purpose, a random number is generated 
with a uniform distribution in the interval (0.1); and if  it was less than the                  , the new state will accepts.

The higher the value of  ∆E, the less likely to accept the state. Also, by reducing the temperature, the chance of  accepting 
the state becomes less.

exp −( ∆E
T )

exp −( ∆E
T )

Selecting Primary Guess:

The initial guess in array with length of  n from the set of  numbers
S_current = {0.1.2.....m} where m is the number of  rectangles and n is the number of  blue points. The zero number in 
the i-th array indicates that the i-th point is not in any rectangle, and the number j indicates that it is in the rectangle j.

The initial temperature of  the system is determined as T0=0.1*n, where n is the total number of  points on the page.
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In order to execute and test the proposed algorithm, 
we developed a software under Windows operating 
system and C #. The evaluation results is described 
in the next section.

6. EVALUATION AND ANALYSIS OF TESTS

In this section, experiments with different input 
values ​​are executed on the algorithm and the results 
are examined and compared with the optimal answer. 
In order to calculate the recommended algorithm 

score and the optimal algorithm score, 1000 runs of  
the program with different input values ​​and various 
number of  points, had been done and results were 
recorded. Since our recommended algorithm has 
a random nature and receives a different response 
with each run, so in order to gain a steady state, we 
have to run for several times, then The average were 
taken and inputs changed again. Experiments started 
with 5 red points and 5 blue points and continues up 
to 50 points per color. Based on different outputs, 
the recommended algorithm score and the optimal 
algorithm score are derived from formulas 2 and 3:

 

Recommended algorithm score = * 100          

 

(blue cover − red cover)
(blue points)

						     (2)

  

 

Optimal algorithm score =  * 100

 

(blue optimal  cover − red optimal cover)
(blue points)

					     (3)

Figure 8 shows the recommended and optimal 
algorithm scores based on the sum of  red and blue 
points. In this chart from left to right the number of  
red points increases and rises from 5 to 50. If  the 

number of  blue points is steady in all 10 red states, 
and fluctuating starts from 5, up to 50 and drops 
back to 5 points (up to 50 points).

Figure 8: Algorithm Scoring charts

As shown in Figure 8, the optimal algorithm is 
higher than our algorithm; and in some cases is equal 
to recommended algorithm and overlapping with 
it. Also, the recommended algorithm in compare 
with optimal algorithm has a small difference in 
score, indicating its proper function. The blue and 

red covering chart is also shown in Figure 9. In 
this chart, the blue and red points are considered 
separately. According to the results, with the increase 
in the number of  red points, their coverage is also 
increased.
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Figure 9: Color Coverage Chart

Figure 10 shows the optimal red points and optimum 
blue points. According to this chart, the number 
of  red and blue coverage increases. At first, the 
difference between the blue and red charts is high 
and gradually decrease with increase in the number 
of  red points; Also at the same time the red point’s 

coverage will increase. In fact, with the increase in the 
number of  red points, the algorithm’s performance 
becomes more difficult in separating, and more 
number of  red points will covered by rectangles.

Figure 10: optimal coverage chart of  blue and red points

The graphs and outputs derived from the average 
of  the recommended algorithm score and optimal 
algorithm score (based on the sum of  the points) 
are also shown in Figure 11. In this chart, the X axis 

represents the sum of  the blue and red points and 
the Y axis represents the score. The blue curve is the 
average of  recommended algorithm scores.
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Figure 11: The recommended algorithm scoring and optimal algorithm scoring chart

As shown in Fig 12, our algorithm is always below 
optimal, but close to it, and does not have much 
difference to be optimal. In this chart, when the 
number of  red and blue points increases, the 
coverage of  red points also increases, and thus the 
score of  the algorithm decreases.

As the total number of  points increases, the algorithm 

score and optimal score gradually decreases and the 
algorithm separation becomes more difficult. But in 
general, the separation function of  our algorithm 
is not far from the optimal algorithm, and by 
comparing the chart of  these two algorithms, it can 
be concluded that our recommended algorithm in 
separation, has shown an acceptable result.

Figure 12: The average total score of  recommended algorithm and the average total score of  the optimal 
points based on total points.

To evaluate the performance of  the recommended 
algorithm, with respect to the optimal algorithm, 
the ratio of  the algorithm’s score to the optimal 
algorithm score has been calculated. To obtain this 
ratio, the average optimal score is divided by the 

average score of  the algorithm. As shown in Table 
4, the recommended algorithm is operating as 0.8 
of  optimal algorithm, and in fact it has 0.2 distance 
with it.
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Table 4. Final Scores

algorithm score 

optimal algorithm 70 

recommended algorithm 56 

Ratio of the recommended algorithm to the optimal algorithm 0.8 

In order to Evaluate the efficiency of  the 
recommended algorithm and the optimal algorithm 
the program runs about 1000 times and tests with 
different points and different input values. 

Based on the data from the execution, it can be 
concluded that our proposed simulated annealing 
algorithm is accurate and efficient to solve the 
problem of  separating the set of  two-color points 
in one page.

7. CONCLUSION

In this paper, the problem of  separation of  
two red and blue points is investigated by three 
rectangles and a new metaheuristic algorithm based 
on simulated annealing is presented. In general, 
simulated annealing algorithm has a good efficiency 
and precision, to solve the problem of  separating 
two-color points on one page; and in many cases it 
provides an optimal or close response. In fact, our 
goal was to separate the desired blue points from 
undesirable points in red by three rectangles, in such 
a way that these rectangles contain the most desire 
points.

The recommended algorithm to solve this 
optimization problem, has been able to separate the 
blue points from the n input point, at time order (O)
n and gain %80 of  the optimal algorithm score. It 
also solve the limitations that exist in separation of  
points by one rectangle and two rectangles. On the 
other hand, our recommended method is provided, 
regardless of  limitations or specific state, and a wide 
range of  problems are solved by it.

In order to analyze the recommended method, the 
algorithm is executed with c# and is compared with 
the results of  the optimal algorithm. Our results 
showed that this heuristic algorithm based on 
simulated annealing algorithm is near optimal, and 
in some cases it obtains the exact optimal response.
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