
1

Designing a metaheuristic mining
algorithm to separate two-color points in a
two-dimensional environment

Author:

Parisa Aghazade1,*
Alireza Bagheri2

Mohamadmansoor Riahi Kashani3

SCIENTIFIC RESEARCH

How to cite this paper:
Aghazade. P., Bagheri. A., Kashani. M. R.
Designing a metaheuristic mining algorithm
to separate two-color points in a two-
dimensional environment. Tehran, Iran.
Innovaciencia. 2019; 7 (2): 1-14. DOI:
http://dx.doi.org/10.15649/2346075X.773

Reception date:
Received: 13 February 2019
Accepted: 28 April 2019
Published: 25 October 2019

Keywords:
Data-mining, Separation of points,
Computational geometry, metaheuristic
Algorithm, Simulated Annealing (SA).

ABSTRACT

The separation of color points is one of the important issues in
computational geometry, which is used in various parts of science;
it can be used in facility locating, image processing and clustering.
Among these, one of the most widely used computational geometry
in the real-world is the problem of covering and separating points
with rectangles. In this paper, we intend to consider the problem
of separating the two-color points sets, using three rectangles. In
fact, our goal is to separate desired blue points from undesired red
points by three rectangles, in such a way that these three rectan-
gles contain the most desire points. For this purpose, we provide a
metaheuristic algorithm based on the simulated annealing method
that could separates blue points from input points, , in time order
O (n) with the help of three rectangles. The algorithm is executed
with C# and also it has been compared and evaluated with the op-
timum algorithm results. The results show that our recommended
algorithm responses is so close to optimal responses, and also in
some cases we obtains the exact optimal response.

Diseño de un algoritmo de minería metaheurístico para separar
puntos de dos colores en un entorno bidimensional

Check for
updates

*	 Corresponding author:
1 	 MSC student of Islamic Azad University, North Tehran Branch, Tehran, Iran. e-mail: Parisa.Aghazade472@gmail.com
2 	 Assistant professor and faculty member of Amirkabir University
3 	 Assistant professor and faculty member, Islamic Azad University, North Tehran University, Tehran, Iran

http://dx.doi.org/10.15649/2346075X.773
https://orcid.org/
https://orcid.org/
https://orcid.org/

2

1. INTRODUCTION

In computational geometry, a geometric model
is presented as a branch of design and analysis.
This branch of science is actually a combination
of geometry and computer that has many uses
in various majors such as computer graphics,
geographic information systems, integrated circuit
design, statistics, machine vision and robotics [1].

In this major, the separation of color points is
considered as one of the most important and widely
used computational geometry.

So far, numerous studies have been carried out with
different shapes such as circle, rectangle and square

[2]. In this study, we focused on the separation of
color points with three rectangles. In order to solve
this problem, we intend to introduce a metaheuristic
algorithm based on Simulated Annealing (SA)
algorithm, evaluating its results and comparing it
with the optimal algorithm.

2. STATEMENT OF THE RESEARCH
PROBLEM

In the covering problems, a set of geometric objects
such as a point, a line segment, and a circle are
covered by one or more geometric objects such as a
circle, rectangle, square, and a triangle. As shown, in
Figure 1, covering the points of a page is represented
by a rectangle.

Figure 1: covering the page points by a rectangle

From a basic perspective, it is assumed that all
given points are indistinguishable from each other.
Consequently, the purpose of this view is to cover
the geometric shape in all directions so that, the
criterion such as the area or perimeter of the shape
become minimum. This issue is known as the full
coverage issue, but due to limitation of resources
in the real-world, full coverage may not always be
possible. According to these cases, the problem
of full coverage and optimal coverage by different
geometric shapes has been widely studied [3].	

In another perspective on the coverage problems,
it is assumed that the points are not of the same

quality. More precisely, in this view it is assumed
that some of the given points are desirable and the
rest of the points are undesirable. Therefore, in this
case, the goal is to separate the desired and undesired
points from each other. This approach is known as
the separation problem, and the geometric shape in
this matter is called the separator.

It is assumed that there are a set of points with two
different colors on the page, so that the points with
a certain color, representing the desired points and
points with other colors, represent undesired points
[4]. In Figure 2, the separation of blue and red points
is represented.

3

Figure 2: separating two-color points by a rectangle

A variety of research has been done to separate
two-color points using a rectangle. The blue and
red points may be located on the page, which their
complete separation is not possible by a rectangle or
two rectangles and therefore it is necessary to use
three rectangles.

The issues related to the separation of points with
geometric shapes, have many diversity and they were
shown in a completely different issue with just a
slightest change. Examining the largest or smallest
rectangle separator, finding the largest empty
rectangle of points, separating points with more

than two colors, and separating points with more
than one rectangle, are some of these issues. In this
matter, it is assumed that there are a number of points
with two colors of blue and red, in the 2d space of
R2, and the main goal is to find the smallest three
rectangles that can cover the most blue points in this
space. In other words, all the blue points may either
be located inside the rectangle or at the boundaries
of these three rectangles, while all the red points
are outside of the three rectangles or located at the
boundaries. Figure 3 shows three rectangles covering
the blue points.

Figure 3: the three rectangles contains blue points as much as possible, and red points are outside them.

3. DESCRIPTION OF THE SIMULATED
ANNEALING (SA)

Simulated Annealing Algorithm is a simple and
effective metaheuristic optimization algorithm
for solving optimization problems in large search
domains. In fact, this Algorithm applies to issues
that finding an approximate response for general
optimization, is more important than finding a precise
response to local optimum at a limited and specific
time [5]. The gradual Annealing technique is used by

metallurgists to achieve a state in which the solid is
well-developed and its energy is minimized. The goal
is to maximize crystalline size in the solid state of the
Annealing substance. This technique involves placing
the material at high temperature and then gradually
reducing the aforementioned temperature. In fact,
gradual and slow Annealing in this algorithm can be
considered as a gradual reduction in the possibility
of choosing worse responses when searching in the
response space. In Figure 4, the general schema has
been shown.

4

Figure 4: The schema of a region includes peaks and valleys where the ball can leap into different parts.

In this case, the goal is to place the ball in the deepest
valley (highest level of energy) of the area shown in
Figure 4, but the location is known. To do this, first
we allow the ball to be thrown into different areas
with a high radius. This is done in SA by choosing
large values ​​of the neighborhood radius. The ball
after throwing, naturally will go down to the areas
containing the valley; But since this may not be the
deepest valley, then the ball must be allowed to be
mutated from this state and be thrown again.

This will continue to make sure that the ball is finally
at the deepest part of the valley for once. To keep the
ball in the desired area, we must decrease the ball’s
permission to throw over time. Also, the probability
of a ball falling to areas with higher heights (out of
the valley) must reduce.

Similarly, in the SA algorithm, the radius of the
neighborhood is initially large and, as a result,
different values ​​of the solution space were chosen.
Also, by choosing a high temperature parameter, it
is also possible to go to high energy states, but over
time, the neighboring radius is reduced, and as a
result, the selected values ​​of the response space are
slightly different than each other, so by decreasing
the temperature, the probability of going to higher
energy states is reduced. Consequently, in the initial
steps, by choosing a large neighborhood radius and
the probability of going up to the worse moves,
the probability of getting caught in the maximum

or minimum points of the locality decreases. Also,
in the lower steps, with decrease in the neighboring
radius, and considering that all the points were
randomly searched (a number of points are in their
optimal points, or close to it) they reach a general
optimal point and stay in it. In general, metaheuristic
SA algorithm uses neighbors with same answers, to
search for the space of the answers. This algorithm
can achieve the best possible answer by spending a
sufficient time.

The probability of a transition from the current
state such as s, to a new candidate state, such as
as (. ′ .) , is also determined by a probability
function as in which e = E (s) and ′ = E (′S) (The
E function is the energy state of the space and T
represents the variable temperature with the system
time).

Lower energies are better than those with higher
energies. Also the probability function of P should
be positive, even when 𝑒𝑒 is smaller than ′. This
feature ensures that the algorithm does not get
caught in a local response.

When T asks for zero, the P probability must either
be zero (e smaller than ′) or be a positive number
(′ smaller than e). For values ​​that are enough small-
er than T, the system moves to the point of mini-
mum energy. It should be noted that by placing T =
0, the issue is trimmed into a greedy algorithm, and

5

its moves will only be towards the points with less
energy.

In the initial case of Simulated Annealing (SA),
when ′ is smaller than e, the probability (. ′ .)
is equal to 1, which means that the procedure always
moves to lower points, independently from tempera-
ture. Although this condition is not required for the
operation of the method, many of its simulation
and implementations are considered as part of the
definition of the method. The function P is always
chosen so that the probability of accepting a motion
(when the difference between two modes is low) is
reduced. For example, small upward moves are more

likely than large moves. With these status, it’s clear
that temperature plays a crucial role in controlling
changes in the system (due to its sensitivity to energy
changes). More precisely, in large T values, changes
in system state are more sensitive to larger changes
in the system rather than when the temperature is
smaller.

The overall structure of the Simulated Annealing
algorithm and its stages are briefly shown in Figure
5. As shown, the SA algorithm has two repetition
chains, the first chain responsible for finding local
responses at any temperature and the second chain is
responsible for the reduction of temperature.

Figure 5: Flowchart Simulated Annealing algorithm.

6

The flowchart shows the simplest form of the SA
algorithm and its stages are as follows:

•	 Choose initial guesses or tricks (X) randomly.
• 	 Generate random new answer or neighbor’s

answer (Y) from the initial answer.
• 	 Energy comparison of initial response (X) with

neighbor’s response (Y).

If the energy difference is negative (ΔE <0), or
in other word the energy of the new answer (Y)
is less and better than the initial answer (X), then
the answer (Y) is accepted as the current answer;
otherwise, if the answer (Y) is More and worse
than the initial answer (X), then the answer (Y) is
accepted as probable. It means that, first, a random
number is generated between zero and one; if this
number is smaller and better than −ΔE

KT e , the new
answer (Y) is selected; Otherwise it is not accepted
and the answer of a new neighbor is selected. If the
algorithm has reached the final temperature, it goes
to the next stage, otherwise it remains at the same
temperature and tries to find the next answer by re-
processing from the current answer. It ends, when
the conditions and criteria for termination of the
algorithm are established; otherwise, the temperature
is reduced and a new answer is produced again.

4. RESEARCH BACKGROUND

The issue of finding the minimum circle, was raised
by Sylvester in 1857 [6]. The most basic method
solve the problem by examining all possible states
at time O (n4). Over time, algorithms were proposed
to resolve this problem, all of which tried to reduce
the execution time of this algorithm. In 1975, an
algorithm with time order O (nlogn) was proposed to
solve this problem and then proceeded to optimum
time O (n), with the help of a linear programming
method [7]. The problem is to find the smallest
rectangle parallel to the x-axis, which covers exactly
n points of P, and solved by the agraval [8] at time
O(k2 nlogn), Epstein [9] at time O(n2) and Segal M.
and Kedem K. [7] At time O(n+k (n-k)2).

In 1994 optimal cover was proposed by Epstein and
Arisan, using a fixed-size rectangular and coordinate
axes [10] and presented algorithmic with time order
O(k2 nlogn) to solve this problem.

In another version of the cover problem, which is
called optimum coverage or more precisely called
maximal coverage, it is assumed that a set of n
points in a page and a fixed-dimensional geometry is
given and the goal is to put this shape on the page in
a way that covers maximum number of points. This
problem has been proposed using different geomet-
ric shapes; Problems such as minimum area enclos-
ing using a circle [11], minimum area enclosing using
a fixed-dimensional rectangle and coordinate axes [12]
and optimal coverage using a convex polygon [13].

In 2009, the problem of covering the points with
two Isothetic rectangles was defined by Saha and
Dos [5]. A set of n points in the page is covered by
two Isothetic rectangles at any arbitrarily orientation.
This algorithm, at the time O(n3) can be used to solve
another well-known optimization problem. This
issue is to cover points with two Isothetic rectangles,
which gain the minimum area of the two rectangles
at any arbitrarily orientation.

Eckstein et al. [12] examined the issue of separation in
a set of points with a rectangle, so that none of the
red points located inside the separators rectangle. In
addition, the number of blue points inside the rect-
angular cover is maximized. They showed that this is
an NP-hard problem.

In 2013, Afsane Halatabadi Farahani [1] presented a
heuristic algorithm for separation of color points
with two circles, which answers at the time of O (n).
In same year, Sarah Khalafi et al [13] proposed a solu-
tion to separate points with the largest single-color
polygon were at time O (nlogn) the separation of
points will be done.

In the year 2012, Zahra Moslehi et al. [14] proposed an
algorithm for separating the set of two-color points
with two indistinguish and isothetic rectangles. They
took two sets of blue and red points with a total size
of n in order to report all orientation of the two
isothetic separator with empty and non-empty inter-
sections, so that all the blue points were located in-
side the rectangles or all the red points were located
outside them. These two states are solved with time
order O (n2(n)) and O (n2 logn) respectively.

7

5. THE PROPOSED METHOD

In this section the proposed algorithm were outlined
in order to separate the two blue and red points
with three rectangles. This algorithm is not limited
to the number of rectangles and can be used to

solve various problems, arbitrarily. the assume is that
the blue and red points are located in a given two-
dimensional (2d) space, and dispersed in this space
without any restrictions on the location. Figure 6
shows an example of dispersion of two-color points
in 2d space.

Figure 6: Probable mode of dispersion of two-color points in 2d space.

The points that are located inside the area are
considered as internal points, and points that are

not inside the area of any rectangle, are considered
as external points. Rectangles are not necessarily
separate and may overlap (Fig 7).

Figure 7: Deploying of three rectangles with overlapping regions in two-dimensional space

The Desired C onfiguration of algorithm is placement
of the maximum number of blue points and the
minimum number of red points in the rectangle, so
we need to define an Objective function, which, our
desirable mode is the minimum of that (Formula
1) and use a minimizing algorithm of Objective
function. In this research we have used the Simulated
Annealing algorithm (SA). The system energy (E) is
calculated in a given state (s) as follows:

() = − 				 (1)

Where nRed and nBlue are the number of red points and

the number of points in the rectangles, respectively.
Therefore, the optimal mode is s* that the rectangles
contain most of the blue points and the minimum
points of the red, which corresponds to the mini-
mum energy of the system. If the blue points are
equal to n and the number of rectangles is m=3, and
each of the blue points can be located in one of the
following 4 states (m + 1 = 4):

• state 0: not in any rectangle
• state 1: Inside rectangular No. 1
• state 2: Inside the rectangle No. 2
• state 3: Inside the rectangle No.3

8

Each blue point is randomly positioned in one of
the states and by storing the position of each point
in the rectangular data structure, we consider the
maximum and minimum values ​​of x and y of the
blue points and draw the sides of the rectangles. In
fact, rectangles are drawn by blue points. Therefore,
the system state (s) can be shown by an array with
length of n representing numbers 0 to m, that m
indicating the number of rectangles. For example, if

there are 10 blue points (n = 10), the state of the
system can be considered as arrays in table 1. This
array from left to right shows that point number 1
is not inside any rectangles. Points 2, 4, and 10 are
in rectangle 1; points 5, 6 and 9 in rectangle 2 and
points 3 and 7 are also in rectangle 3. As a result, this
array can be used to generate different states of the
system.

Table 1: a possible state (s) for 10 blue points and 3 rectangles

1 2 0 3 2 2 1 3 1 0

In the next step, the red point’s status is checked with
rectangles, and by comparing the coordinates of the
red points with the coordinates of the rectangle,
it is determined that which points are inside the
rectangles and which ones are outside. Finally,
the system’s energy is obtained by calculating the
difference of red points inside the rectangles with
blue points inside the rectangles (Formula 1). If
there are fewer red points inside the rectangle, the
value of the Objective function becomes lower and
closer to the optimal value (in some cases the optimal
response is achieved).

To move from the current state of system to a
neighboring state, in accordance with simulated
annealing theory, the changes should be gradual
and irreversible. To create a new neighbor from the
current state, we first select a point randomly, then
change the value of this point randomly; and by
changing the position of the points on the page, the
new rectangle will be traced by the new coordinates
of the blue points. Table 2 shows a random and
reversible change to generate a new neighbor. In this
change, the fourth point is assumed to be outside of
all rectangles.

Table 2: Random and reversible Change to generate a new neighbor.

1 2 0 3 2 2 1 3 1 0

1 2 0 3 2 2 0 3 1 0

After the states of all points are identified, the points in
a particular rectangle define the rectangle’s boundaries.
That is, the leftmost, rightmost, highest and lowest
points in each rectangle, indicate the boundaries
of the left, right, up and down, respectively. The
coordinates of the red points are also examined with
new rectangles, and it is determined that each one is
located inside or outside of the rectangle. Finally, the
system’s Objective function is recalculated and the
differences in red and blue points are obtained. If
the energy of neighboring state, is less than energy
of the initial system state, the new neighboring state
is considered as the current mode; otherwise, the
algorithm accepts the answer with the probability of

−ΔE
T ((, as the current answer. In this regard, the ΔE

is the difference between the Objective function of
the current answer and the answer of the neighbor;
also the T represents the temperature. At each
temperature, several repetitions are performed,
and then the temperature is gradually reduced. In
the initial steps, the temperature is very high, so it
is more likely to accept worse answers. With the
gradual reduction of temperature in the final steps,
there is less chance to accept worse answers, and so
the algorithm converges to an optimal response. The
P seudo-code for our proposed algorithm, which is
executed based on the simulated annealing algorithm,
is shown in Table 3.

9

Table 3: Steps of the proposed algorithm

The Objective function (System energy) is calculated: E_current

To calculate the Objective function, the blue and red points condition is checked and the number of red and blue points
inside the rectangles, is counted. The target function is calculated using Formula 1. The best Objective function is obtained
(E* = E_current) and the corresponding state is stored: S* = S_current

To generate the new neighbor state, (S_new), one of the array indexes from (1.2.....n) is randomly selected and changed
in random form. Of course, to generate a neighboring state, the blue point does not change, and only its status changes
and is randomly determined to be outside of the rectangles or inside other rectangles. In the neighboring state, one of the
rectangles is changed, so the neighbor state is the same as the previous one.

The Objective function (System energy), E_new is calculated for the new random state.

To calculate the Objective function of neighboring mode, the status of blue and red points is checked and the number of
red and blue points is counted inside the rectangles.

If the new state is adopted, the energy and current state will be updated:

 Ecurrent=Enew ؛ Scurrent=Snew

To find the best answer, the condition Ecurrent<E* is checked and if it is established

 E*=Ecurrent و S*=Scurrent are considered.

Temperature reduction:

The SA algorithm is simulated by reducing the temperature and gradually annealing the system. A gradual annealing is
considered as linear reduction with linear rate: T=T-δT

Convergence condition test: If the Objective function reaches the minimum possible value, the algorithm has reached the
final answer and it goes to the next stage.

Stop condition check: The algorithm goes to the next step if it reaches the maximum number of iterations. The maximum
iterations in the SA algorithm are also equivalent to reaching the minimum temperature. If the T < Tmin it shows that the
system has cooled over that it can change the situation; and the condition is set to stop.

In case of not reaching one of the above conditions, the algorithm will go to the next stage, otherwise it will also go to
step 5.

The best answer found means that S* (corresponding to the lowest value of the objective function, E*) is reported.

the end

begin

1

Coordinates of the blue and red points are stored 2

3

4

5

6

7

8

9

10

11

12

Accepting new state will be checked as follows:
 The energy difference ∆E = Enew-Ecurrent is calculated and accepted by the following conditions:
If ΔE <0, the new state is accepted.
If ΔE> 0, the new state is accepted with the probability of . For this purpose, a random number is generated
with a uniform distribution in the interval (0.1); and if it was less than the , the new state will accepts.

The higher the value of ∆E, the less likely to accept the state. Also, by reducing the temperature, the chance of accepting
the state becomes less.

exp −(∆E
T)

exp −(∆E
T)

Selecting Primary Guess:

The initial guess in array with length of n from the set of numbers
S_current = {0.1.2.....m} where m is the number of rectangles and n is the number of blue points. The zero number in
the i-th array indicates that the i-th point is not in any rectangle, and the number j indicates that it is in the rectangle j.

The initial temperature of the system is determined as T0=0.1*n, where n is the total number of points on the page.

10

In order to execute and test the proposed algorithm,
we developed a software under Windows operating
system and C #. The evaluation results is described
in the next section.

6. EVALUATION AND ANALYSIS OF TESTS

In this section, experiments with different input
values ​​are executed on the algorithm and the results
are examined and compared with the optimal answer.
In order to calculate the recommended algorithm

score and the optimal algorithm score, 1000 runs of
the program with different input values ​​and various
number of points, had been done and results were
recorded. Since our recommended algorithm has
a random nature and receives a different response
with each run, so in order to gain a steady state, we
have to run for several times, then The average were
taken and inputs changed again. Experiments started
with 5 red points and 5 blue points and continues up
to 50 points per color. Based on different outputs,
the recommended algorithm score and the optimal
algorithm score are derived from formulas 2 and 3:

Recommended algorithm score = * 100

(blue cover − red cover)
(blue points)

						 (2)

Optimal algorithm score = * 100

(blue optimal cover − red optimal cover)
(blue points)

					 (3)

Figure 8 shows the recommended and optimal
algorithm scores based on the sum of red and blue
points. In this chart from left to right the number of
red points increases and rises from 5 to 50. If the

number of blue points is steady in all 10 red states,
and fluctuating starts from 5, up to 50 and drops
back to 5 points (up to 50 points).

Figure 8: Algorithm Scoring charts

As shown in Figure 8, the optimal algorithm is
higher than our algorithm; and in some cases is equal
to recommended algorithm and overlapping with
it. Also, the recommended algorithm in compare
with optimal algorithm has a small difference in
score, indicating its proper function. The blue and

red covering chart is also shown in Figure 9. In
this chart, the blue and red points are considered
separately. According to the results, with the increase
in the number of red points, their coverage is also
increased.

11

Figure 9: Color Coverage Chart

Figure 10 shows the optimal red points and optimum
blue points. According to this chart, the number
of red and blue coverage increases. At first, the
difference between the blue and red charts is high
and gradually decrease with increase in the number
of red points; Also at the same time the red point’s

coverage will increase. In fact, with the increase in the
number of red points, the algorithm’s performance
becomes more difficult in separating, and more
number of red points will covered by rectangles.

Figure 10: optimal coverage chart of blue and red points

The graphs and outputs derived from the average
of the recommended algorithm score and optimal
algorithm score (based on the sum of the points)
are also shown in Figure 11. In this chart, the X axis

represents the sum of the blue and red points and
the Y axis represents the score. The blue curve is the
average of recommended algorithm scores.

12

Figure 11: The recommended algorithm scoring and optimal algorithm scoring chart

As shown in Fig 12, our algorithm is always below
optimal, but close to it, and does not have much
difference to be optimal. In this chart, when the
number of red and blue points increases, the
coverage of red points also increases, and thus the
score of the algorithm decreases.

As the total number of points increases, the algorithm

score and optimal score gradually decreases and the
algorithm separation becomes more difficult. But in
general, the separation function of our algorithm
is not far from the optimal algorithm, and by
comparing the chart of these two algorithms, it can
be concluded that our recommended algorithm in
separation, has shown an acceptable result.

Figure 12: The average total score of recommended algorithm and the average total score of the optimal
points based on total points.

To evaluate the performance of the recommended
algorithm, with respect to the optimal algorithm,
the ratio of the algorithm’s score to the optimal
algorithm score has been calculated. To obtain this
ratio, the average optimal score is divided by the

average score of the algorithm. As shown in Table
4, the recommended algorithm is operating as 0.8
of optimal algorithm, and in fact it has 0.2 distance
with it.

13

Table 4. Final Scores

algorithm score

optimal algorithm 70

recommended algorithm 56

Ratio of the recommended algorithm to the optimal algorithm 0.8

In order to Evaluate the efficiency of the
recommended algorithm and the optimal algorithm
the program runs about 1000 times and tests with
different points and different input values.

Based on the data from the execution, it can be
concluded that our proposed simulated annealing
algorithm is accurate and efficient to solve the
problem of separating the set of two-color points
in one page.

7. CONCLUSION

In this paper, the problem of separation of
two red and blue points is investigated by three
rectangles and a new metaheuristic algorithm based
on simulated annealing is presented. In general,
simulated annealing algorithm has a good efficiency
and precision, to solve the problem of separating
two-color points on one page; and in many cases it
provides an optimal or close response. In fact, our
goal was to separate the desired blue points from
undesirable points in red by three rectangles, in such
a way that these rectangles contain the most desire
points.

The recommended algorithm to solve this
optimization problem, has been able to separate the
blue points from the n input point, at time order (O)
n and gain %80 of the optimal algorithm score. It
also solve the limitations that exist in separation of
points by one rectangle and two rectangles. On the
other hand, our recommended method is provided,
regardless of limitations or specific state, and a wide
range of problems are solved by it.

In order to analyze the recommended method, the
algorithm is executed with c# and is compared with
the results of the optimal algorithm. Our results
showed that this heuristic algorithm based on
simulated annealing algorithm is near optimal, and
in some cases it obtains the exact optimal response.

REFERENCES

1.	 Hanabadi Farahani, Afsaneh. (2013), “providing
algorithms for separating color points with some
geometric shapes,” Master thesis, Faculty of Computer
engineering, North Tehran University, Tehran.

2.	 Moslehi, Zahra. (2012), “Separability of points
with geometric objects in two dimensional space,”
Master thesis, Faculty of Computer Engineering and
Information Technology, Amir Kabir University,
Tehran.

3.	 Khalafi, Sarah (2013), “An algorithm for the separation
of points within polygonal environments using the
minimum number of distinctive chord” Master thesis,
Faculty of computer engineering, North Tehran
University, Tehran.

4.	 Sheikhi, F. (2010), “Covering points in the Page
Using Geometric Shapes,” Master thesis, Faculty of
Computer Engineering and Information Technology,
Amir Kabir University, Tehran.

5.	 Mitsunori Miki, Satoru Hiwat, Tomoyuki
Hiroyasu,(2006), “Simulated Annealing using an
Adaptive Search Vector”, 1-4244-0023-2006 IEEE.

6.	 Sylvester J.J., (2008), “A question in the geometry of
situation”, Quart. J. of Math. 1 (1857) 79.

7.	 Segal M. and Kedem K., (1998), “Enclosing k points
in the smallest axis parallel rectangle”, , Information
Processing Letters, vol. 65, no. 2, pp. 95-99.

	 https://doi.org/10.1016/S0020-0190(97)00212-3
8.	 Seara C., (2002), “Geometric separability”, in Applied

Mathematics, Ph.D. Thesis, Universitat Polit’ecnica de
Cataluny.

https://doi.org/10.1016/S0020-0190(97)00212-3

14

9.	 Armaselu B. and Daescu O., (2016), “Dynamic
minimum bichromatic separating circle”, Theoretical
Computer Science.

	 https://doi.org/10.1007/978-3-319-26626-8_50
10.	De Pano N.A.A., (1987), “Rotating calipers revisited:

optimal polygonal enclosures in optimal time”, ACM
South Central Reginal Conf., Lafayette LA.

11.	Freeman H. and Shapria R., (1975), “Determining
the minimum area enclosing rectangle for an arbitrary
closed curve”, Commun. of the ACM 18, pp. 409-413.
https://doi.org/10.1145/360881.360919

12.	Eckstein J., Hammer P . L., Liu Y ., Nediak M. and
Simeone B., (1992), “Finding minimum area kgons”,
Discrete & Computational Geometry (DCG), vol. 7,
pp. 45-58. https://doi.org/10.1007/BF02187823

13.	Khalafi Sara, Bagheri Alireza, Riahi Kashani M.
M., (2014), “Finding The Biggest Monochromatic
Polygon”, INTERNATIONAL JOURNAL OF
Scientific & Technology Research Volume 3, Issue 3.

14.	Moslehi Zahra, Bagheri Alireza, (2016), “Separating
bichromatic point sets by two disjoint isothetic
rectangles”, Scientia Iranica D.

	 https://doi.org/10.24200/sci.2016.3891

https://doi.org/10.1007/978-3-319-26626-8_50
https://doi.org/10.1145/360881.360919
https://doi.org/10.1007/BF02187823
https://doi.org/10.24200/sci.2016.3891

