
1

Performance evaluation of list iteration
methods in Java: an empirical study

Author:

Saman A. Barakat1
Qusay I. Sarhan2

SCIENTIFIC RESEARCH

How to cite this paper:
Baraket, S.A. and Sarhan, Q.I., Performance
evaluation of list iteration methods in
Java: an empirical study, Kurdistan, Irak.
Innovaciencia. 2018; 6(1): 1-6.
http://dx.doi.org/10.15649/2346075X.467

Reception date:
Received: 16 August 2018
Accepted: 25 November 2018
Published: 28 December 2018.

Keywords:
Performance evaluation; Lists; List
iteration methods; List iteration time; Test
methodology.

ABSTRACT

Introduction: Lists are used in various software applications in-
cluding web applications, desktop applications, and Internet of
Things (IoT) applications to store different types of items (e.g.
country name, product model, and device category). Users can se-
lect one or more of these items to perform specific tasks such as
filling forms, ordering products, reading device data, etc. In some
software applications, lists store a huge number of items to be iter-
ated over in order to know what users have selected. From a soft-
ware development perspective, there are a number of methods to
iterate over list items. Materials and Methods: In this paper, five
list iteration methods: Classic For, Enhanced For, Iterator, List It-
erator, and For Each have been compared experimentally with each
other with regard to their performance (execution time required to
iterate over list items). Thus, a number of experimental test scenar-
ios have been conducted to obtain the comparison results. Results
and Discussion: The experimental results of this study have been
presented in Table 4. Conclusions: Overall performance evalua-
tion showed that Iterator and List Iterator methods outperformed
other list iteration methods in all test scenarios. However, List It-
erator outperformed Iterator when the list size was small. On the
other hand, Iterator outperformed List Iterator when the list size
was large.

1	 Software Engineering and Embedded Systems (SEES) Research Group, Department of Computer Science, College of Science,
University of Duhok, Duhok, Kurdistan Region, Iraq, Email: saman.barakat@uod.ac.

2 	Software Engineering and Embedded Systems (SEES) Research Group, Department of Computer Science, College of Science,
University of Duhok, Duhok, Kurdistan Region, Iraq, Email: qusay.sarhan@uod.ac.

Evaluación del rendimiento de los métodos de iteración de listas en Java:
un estudio empírico

Check for
updates

http://dx.doi.org/10.15649/2346075X.467
https://orcid.org/0000-0002-7714-3742

https://orcid.org/0000-0001-8708-0063

2

INTRODUCTION

In the last few years, the demand of developing var-
ious software applications has been increased expo-
nentially. Software developers use different types of
programming languages to build software applica-
tions that cover many aspects of human day-to-day
activities. Java programming language is one of the
dominant languages in software industry nowadays.
It is used to develop many types of software appli-
cations such as web applications, desktop applica-
tions, IoT applications, mobile applications, etc. (1-3).

Some Java based software applications utilize collec-
tions data structures (e.g. lists, vectors, or queues)
to store/retrieve information required to achieve
the goals they built for and to satisfy user needs (4).
For instance, lists can be used to store (a) Names of
countries to be used in a form to allow users to select
their countries. (b) Languages to be used in a form
to allow users to select the languages they speak.
(c) Names of products to allow users to select their
preferable products to buy. In order to know what
users have selected from a list, all list items have to
be iterated over. In this context, Java provides devel-
opers with five methods (5) : Classic For, Enhanced
For, Iterator, List Iterator, and For Each to iterate
over list items. In this paper, these methods have
been compared experimentally with each other to
evaluate their performance in terms of time required
to iterate over list items.

RELATED WORKS

This section presents briefly the most relevant stud-
ies and works to the scope of this paper. In litera-
ture, many studies have compared the performance
of Java with other programming languages. For
example, Togashi and Klyuev (6) have evaluated the
performance of concurrency (multithreading) and
compile time of both Java and Go languages using
simple matrix multiplication. Also, the authors in (7),
have compared Java and Ruby languages in respect to
multithreading. They have used some sort algorithms
and simple matrix multiplication in the evaluation
process. Hundt (8) has evaluated the performance of
loops in Java, Go, C++, and Scala languages in terms
of execution time. Many other studies have com-

pared and evaluated some aspects of java itself with-
out comparing with other programming languages.
For example, the authors of (9, 10) have compared and
evaluated native java arrays with arrays from exter-
nal java libraries in terms of storage capabilities and
execution time. Gupta and Ashraf (4) have developed
a Java based collection framework that uses lists and
many other item/element storage techniques. And,
they have compared it with other ready-made col-
lection framework in terms of storage attributes, de-
gree of simplicity, etc. However, the study have not
evaluated the proposed collection framework from a
performance (e.g. execution time required for iterat-
ing list items using different methods) point of view.
It is worth mentioning that all the studies included
in this section were useful in providing outstanding
explanation of java performance evaluation along-
side many directions. Besides, they were valuable in
providing a general evaluation metrics for this study.
To the best of our knowledge, no previous compre-
hensive study in the literature compared practically
between Java list iteration methods in regard to their
execution time. Thus, this was the rationale behind
this study to be conducted.

TEST METHODOLOGY

This paper uses a test methodology adapted from
Sarhan and Gawdan (11) research paper. The method-
ology represents the conditions, scenarios, metrics,
and testbed setup that have been applied to compare
experimentally the performance of the used list iter-
ation methods in terms of list iteration time.

1.	 Test Conditions

The following test conditions have been considered
in this study:

•	 Every test scenario has been applied on each list
iteration method with the same scenario related
parameters: list size and item size. In this respect,
list size is the number of items stored in a list.
Whereas, item size is the size (in bytes) of each
item in a list.

•	 The test application used in this study has been
programmed and executed on the same comput-

3

er system to ensure using the same hardware and
software specifications.

•	 Before starting the test process and measure-
ments, all user applications (excluding test appli-
cation) have been closed.

•	 During the test process and measurements, the
used computer system has been disconnected
from the Internet.

•	 No processing has been performed by the test
application on list items. Thus, only the time re-
quired to iterate over list items has been consid-
ered.

•	 Every test scenario has been repeated 50 times
and measurements have been averaged to ensure
accuracy via balancing variations in the run time
(12).

•	 All test results have been recorded after creating
lists and their items.

2.	 Test Scenarios

The performance of five list iteration methods is
compared experimentally via different test scenari-
os. Each method used five different list sizes (100,
1000, 10000, 100000, and 1000000 items) and for
each list size, three different item sizes (1, 100, and
1000 bytes) have been used. It is worth mentioning
that the test scenarios mentioned before have been
chosen carefully to cover different aspects of each
method’s overall performance. Besides, the Java code
of each method is presented in Table 1.

Table 1. Implementations of list iteration methods

List iteration method Java code

Classic For for(int i = 0 ; i < listSize ; i++)
 list.get(i);

Enhanced For for(String s : list) { }

Iterator Iterator<String> iterator = list.iterator ();
while(iterator.hasNext ())
 iterator.next ();

List Iterator Iterator<String> listIterator = list.listIterator ();
while(listIterator.hasNext ())
 listIterator.next ();

For Each list.forEach(iter -> { });

3.	 Test Metrics

The time (in milliseconds) required to iterate sequentially over list items by each list iteration method has
been used as a metric to evaluate and compare practically the performance of each method. Thus, any list
iteration method iterates over items of a list in a less time is considered as the best from a performance point
of view.

4.	 Testbed Setup

This study has been setup with software and hardware which their specifications are presented respectively
in Table 2 and 3.

Lenovo
Nota adhesiva
Doble columna

4

Table 2. Specifications of software used in the study

Software Version

Test application
Java Development Kit 1.8.0_161

NetBeans IDE 8.2

Operating System Microsoft Windows 7 Home Basic (64-bit)

Table 3. Specifications of hardware used in the study

Hardware Detail

Computer System

Model Laptop: ASUS K34S Series

CPU Type Intel Core i5-2450M

CPU Speed 2.5 GHz

CPU Cores 4

RAM 6 GB

Rating (Windows Experience Index) 4.5

EXPERIMENTAL RESULTS

In this section, the experimental results of this study have been presented in Table 4.

Table 4. Experimental results of list iteration methods

List Size

(no. of items)

Item Size

(byte)

Classic For

(ms)

Enhanced
For

(ms)

Iterator

(ms)

List Iterator

(ms)

For Each

(ms)

100
1 0.017 0.042 0.006 0.005 6.051

100 0.021 0.049 0.007 0.006 6.351
1000 0.025 0.055 0.008 0.007 6.489

1000
1 0.066 0.182 0.029 0.027 6.554

100 0.074 0.199 0.031 0.029 6.730
1000 0.104 0.211 0.034 0.033 6.797

10000
1 0.436 0.809 0.153 0.169 8.286

100 0.493 0.863 0.155 0.183 8.592
1000 0.532 0.959 0.158 0.189 8.646

100000
1 0.868 1.633 0.366 0.393 9.109

100 0.913 1.654 0.373 0.403 9.297
1000 0.930 2.110 0.396 0.422 9.709

1000000
1 1.000 2.672 0.702 0.715 10.061

100 1.015 2.803 0.843 0.854 10.530
1000 1.022 2.890 0.924 0.956 10.817

5

From Table 4 (bold represents the better results and
italic represents the worst results), the following ob-
servations have been indicated:

•	 Iterator and List Iterator outperformed the other
list iteration methods in all test scenarios. The
times they require to iterate over list items were
very small compared to others.

•	 List Iterator outperformed Iterator when the
list size was small. On the other hand, Iterator
outperformed List Iterator when the list size was
large. However, the difference in performance
between the two methods was very slight.

•	 For each was the worst one in performance in
all test scenarios compared to other list iteration
methods. It requires more time to iterate over list
items compared to others.

CONCLUSIONS

This paper presented an experimental approach to
evaluate the performance of five list iteration meth-
ods in Java in terms of the time required to iterate
over list items. Different list sizes and different sizes
of list items have been used to achieve the afore-
mentioned goal. Overall performance evaluation
showed that Iterator and List Iterator methods out-
performed other list iteration methods in all test sce-
narios. However, List Iterator outperformed Iterator
when the list size was small. On the other hand, Iter-
ator outperformed List Iterator when the list size was
large. Table 4 presented the summary of this study.
This study is crucial to help developers to select a
list iteration method with an acceptable level of per-
formance to develop software applications with crit-
ical time needs. For the future, some works could be
done as: (a) applying the evaluation approach used in
this paper to evaluate the list iteration methods with
each other but with lists of larger sizes (b) measuring
the impact of changing the size of list items on the
overall performance of each method (c) measuring
the impact of changing the type (e.g. integer, float,
or char) of list items on the overall performance of
each method.

REFERENCES

1.	 Deitel P. and Deitel H., Java™ How to Program,
10th Edition, Pearson, 2015.

2.	 Sarhan QI, Gawdan IS. Web Applications and
Web Services: A Comparative Study. Sci J Univ
Zakho [Internet]. 2018;6(1):35–41. Available
from: https://doi.org/10.25271/2018.6.1.375

3.	 Sarhan QI. Internet of things: a survey of chal-
lenges and issues. Int J Internet Things Cy-
ber-Assurance [Internet]. 2018;1(1):40. Avail-
able from: http://www.inderscience.com/link.
php?id=90162

	 https://doi.org/10.1504/IJITCA.2018.10011246
4.	 Gupta A, Ashraf M. Comparative analysis of en-

capsulated Java collection framework based on
storage attributes. In: International Conference
on Computing, Communication & Automation
[Internet]. IEEE; 2015. p. 914–7. Available from:
http://ieeexplore.ieee.org/document/7148506/

	 https://doi.org/10.1109/CCAA.2015.7148506
5.	 Oracle Website: https://docs.oracle.com/ja-

vase/tutorial, accessed 02/09/2018.
6.	 Togashi N, Klyuev V. Concurrency in Go and

Java: Performance analysis. In: 2014 4th IEEE
International Conference on Information Sci-
ence and Technology [Internet]. IEEE; 2014. p.
213–6. Available from: http://ieeexplore.ieee.
org/document/6920368/

	 https://doi.org/10.1109/ICIST.2014.6920368
7.	 Das S, Kone V. Ruby under Scanner : Compar-

ison with Java, University of California, techni-
cal report, 2010. Available from: https://pdfs.
semanticscholar.org/8a06/b3a1694b7ee9ac3b-
2211b7cbc05efc7528ee.pdf

8.	 Hundt R. Loop Recognition in C ++ / Java /
Go / Scala. Proc Scala Days. 2011;1(1):38–47.

9.	 Wendykier P, Borucki B, Nowinski KS. Large
Java arrays and their applications. In: 2015 In-
ternational Conference on High Performance
Computing & Simulation (HPCS) [Internet].
IEEE; 2015. p. 460–7. Available from: http://
ieeexplore.ieee.org/document/7237077/

	 https://doi.org/10.1109/HPCSim.2015.7237077

https://doi.org/10.25271/2018.6.1.375
https://doi.org/10.1504/IJITCA.2018.10011246
https://doi.org/10.1109/CCAA.2015.7148506
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://doi.org/10.1109/ICIST.2014.6920368
https://doi.org/10.1109/HPCSim.2015.7237077

6

10.	Costa D, Andrzejak A, Seboek J, Lo D. Empirical
Study of Usage and Performance of Java Col-
lections. In: Proceedings of the 8th ACM/SPEC
on International Conference on Performance
Engineering - ICPE ’17 [Internet]. New York,
New York, USA: ACM Press; 2017. p. 389–400.
Available from: http://dl.acm.org/citation.
cfm?doid=3030207.3030221

	 https://doi.org/10.1145/3030207.3030221
11.	 Sarhan QI, Gawdan IS. Java Message Service

Based Performance Comparison of Apache Ac-
tivemq and Apache Apollo Brokers. Sci J Univ
Zakho [Internet]. 2017;5(4):307–12. Available
from: https://doi.org/10.25271/2017.5.4.376

12.	Corral-García J, González-Sánchez J-L,
Pérez-Toledano M-Á. Evaluation of Strategies
for the Development of Efficient Code for
Raspberry Pi Devices. Sensors [Internet]. 2018
Nov 21;18(11):4066. Available from:

	 http://www.mdpi.com/1424-8220/18/11/4066
	 https://doi.org/10.3390/s18114066

https://doi.org/10.1145/3030207.3030221
https://doi.org/10.25271/2017.5.4.376
https://doi.org/10.3390/s18114066

