
1

Performance evaluation of relational
embedded databases: an empirical study

Author:

Hassan B. Hassan1

Qusay I. Sarhan2

SCIENTIFIC RESEARCH

How to cite this paper:
Hassan, B. H., and Sarhan, Q. I., Performance
evaluation of relational embedded databases: an
empirical study, Kurdistan, Irak. Innovaciencia.
2018; 6(1): 1-9.
http://dx.doi.org/10.15649/2346075X.468

Reception date:
Received: 22 September 2018
Accepted: 10 December 2018
Published: 28 December 2018

Keywords:
Embedded devices, Embedded databases,
Performance evaluation, Database operational
performance, Test methodology.

ABSTRACT

Introduction: With the rapid deployment of embedded databases
across a wide range of embedded devices such as mobile devices,
Internet of Things (IoT) devices, etc., the amount of data generat-
ed by such devices is also growing increasingly. For this reason, the
performance is considered as a crucial criterion in the process of
selecting the most suitable embedded database management system
to be used to store/retrieve data of these devices. Currently, many
embedded databases are available to be utilized in this context. Ma-
terials and Methods: In this paper, four popular open-source rela-
tional embedded databases; namely, H2, HSQLDB, Apache Derby,
and SQLite have been compared experimentally with each other to
evaluate their operational performance in terms of creating data-
base tables, retrieving data, inserting data, updating data, deleting
data. Results and Discussion: The experimental results of this
paper have been illustrated in Table 4. Conclusions: The experi-
mental results and analysis showed that HSQLDB outperformed
other databases in most evaluation scenarios.

1	 Software Engineering and Embedded Systems (SEES) Research Group, University of Duhok, Duhok, Kurdistan Region, Iraq,
Email: hassan.bapeer@uod.ac.

2 	Software Engineering and Embedded Systems (SEES) Research Group, Department of Computer Science, College of Science,
University of Duhok, Duhok, Kurdistan Region, Iraq, Email: qusay.sarhan@uod.ac.

Evaluación del rendimiento de bases de datos embebida: un estudio
empírico

Check for
updates

https://orcid.org/0000-0003-2141-0909
https://orcid.org/0000-0001-8708-0063
http://dx.doi.org/10.15649/2346075X.468

2

INTRODUCCTION

Recent advances in data-driven software applications
and systems that need to store their own data with-
in the machines they reside in rather than remote
machines/servers, have paved the way for different
types of software applications and devices to use
embedded databases. An embedded database is a
small size database integrated with a software appli-
cation that requires access to its own data. Thus, the
database system is “hidden” from the application’s
end-user and requires little or no maintenance ac-
tivities (1). Embedded database systems can be used
for various purposes. For example, they can be used
for storing system logging activities, email archive ac-
tivities, contacts information in mobile devices, and
sensor data in constrained and IoT devices (17). To
ensure database consistency, the data are stored and
updated in short running transactions which increas-
es write latency and amplification (2). This plays a de-
termining factor in the performance of applications.
As the data in embedded databases reside in the
same machine that runs the application; the database
engine is always running and accessible. Besides, it is
not shared or networked (only one software applica-
tion could access the embedded database file at any
time). Compared to traditional databases (also called
client-server databases) which are often used in web
applications, web services, and distributed soft-
ware applications (16), traditional databases are more
complicated. For example, they require monitoring
and managing of data sharing mechanisms, servers
configuration, servers failure solution, and serv-
ers maintenance) (3). In this paper, four well-known
open-source relational embedded databases; namely,
H2 (4), HSQLDB (5), Apache Derby (6), and SQLite (7)

have been compared experimentally with each other
to evaluate their operational performance. Database
developers and researchers are concerned about the
factors affecting the database performance in re-
al-world usage (8). In addition, database benchmark-
ing helps organisations in selecting the most suitable

and compatible database for their businesses. Thus,
many studies in literature such as (9-14) have intro-
duced, explored, and evaluated the performance of
various traditional and embedded databases along-
side many directions. All the aforementioned stud-
ies were crucial in providing useful explanation of
different types of databases, databases architectures,
and database based applications. Also, they were
extremely valuable in providing a theoretical back-
ground and a general evaluation metrics for this ex-
perimental study. However, no previous published
study in literature has compared experimentally be-
tween the selected embedded databases in terms of
data storing and processing capabilities. Thus, this
was the rationale behind this experimental study to
be conducted.
The rest of this paper is organized in sections as fol-
lows. Section 2 presents the evaluation methodology
(evaluation conditions, evaluation scenarios, evalua-
tion metrics, and software/hardware setups) used in
this experimental study. Section 3 presents the exper-
imental results of comparing the selected relational
embedded databases with each other according to
various test scenarios. Finally, some conclusions and
future works have been given in Section 4.

EVALUATION METHODOLOGY

The evaluation methodology used in this study is
adapted from (18) and it includes the evaluation con-
ditions, evaluation scenarios, evaluation metrics, and
software/hardware setups that have been applied
and used to compare experimentally the perfor-
mance of each embedded database in terms of data
storing and processing capabilities.

1.	 Evaluation Conditions

The following evaluation conditions have been con-
sidered in this study:

•	 All selected embedded databases have been tested
with their default settings and configurations.

3

•	 Every test scenario has been applied on each em-
bedded database using Structured Query Lan-
guage (SQL) statements(15) with the same test sce-
nario and its related parameters.

•	 Each database table used in the evaluation pro-
cess consists of 1000 records (rows) and 10 fields

(columns). The table with its specifications has
been created using the SQL statement in Scenario
1.

•	 All test data in this paper are using identical data
structure as shown in Table 1.

Table 1. Database structure
Attribute Name Data type
efname varchar(10)
elname varchar(10)
email varchar(40)
job varchar(9)
mgr int
hiredate date
sal numeric(7,2)
comm numeric(7,2)
gender varchar(10)
empno int

• 	 The hardware configuration of the test environ-
ment is not the most paramount in this paper, we
tend to design some scenarios in certain environ-
ment to evaluate the performance of different
embedded databases. From our experience in the
field, all test scenarios have been selected as the
most used scenarios in different types of software
applications.

•	 Test applications (to store/receive data to/from
embedded databases) have been programmed and
executed on the same computer system to ensure
using the same software and hardware specifica-
tions.

• 	 Before starting the testing and measurements, all
user applications (excepting applications used to
test the databases) have been closed.

• 	 During the whole period of testing and measure-
ments, the used computer system disconnected
from the Internet.

• 	 Every evaluation scenario has been repeated 10
times and then measurements have been averaged
to ensure more accuracy.

• 	 Evaluation results have been recorded after ini-
tializing the database driver and establishing con-

nections to the selected embedded databases

2.	Evaluation Scenarios

The operational performance of each relational em-
bedded database is compared experimentally via dif-
ferent Evaluation tests taken from real-world data-
base scenarios, as follows:

●	 Scenario 1
The test application creates a single database ta-
ble using the following SQL statement:
CREATE TABLE empTable “+i+” (empno
INT PRIMARY KEY , efname VARCHAR(10),
elname VARCHAR(10), email VARCHAR(40) ,
job VARCHAR(9), mgr INT , hiredate DATE,
sal NUMERIC(7,2), comm NUMERIC(7,2), gender
VARCHAR(10))

●	 Scenario 2
The test application creates 50 database tables
using the following SQL statement in a loop (it-

4

eration variable i goes from 1 to 1000):
CREATE TABLE empTable “+i+” (empno
INT PRIMARY KEY , efname VARCHAR(10),
elname VARCHAR(10), email VARCHAR(40) , job
VARCHAR(9) , mgr INT , hiredate DATE , sal
NUMERIC(7,2), comm NUMERIC(7,2), gender
VARCHAR(10));

● 	Scenario 3
The test application deletes the database table
with no inserted records using the following
SQL statement:
DROP TABLE empTable;

● 	Scenario 4
The test application deletes the database table
with 1000 records using the following SQL state-
ment:
DROP TABLE empTable;

● 	Scenario 5
The test application reads all data in the database
table using the following SQL statement:
SELECT * FROM empTable;

● 	Scenario 6
The test application reads only the first record
from the database table using the following SQL
statement:
SELECT * FROM empTable where empno=1;

● 	Scenario 7
The test application reads only the middle record
from the database table using the following SQL
statement:
SELECT * FROM empTable where emp-
no=500;

● 	Scenario 8
The test application reads only the last record
from the database table using the following SQL
statement:
SELECT * FROM empTable where emp-
no=1000;

● 	Scenario 9
The test application deletes all data in the data-
base table using the following SQL statement:
DELETE * FROM empTable;

● 	Scenario 10
The test application deletes only the first record
from the database table using the following SQL
statement:
DELETE * FROM empTable where empno=1;

● 	Scenario 11
The test application deletes only the middle re-
cord from the database table using the following
SQL statement:
DELETE * FROM empTable where emp-
no=500;

●	 Scenario 12
The test application deletes only the last record
from the database table using the following SQL
statement:
DELETE * FROM empTable where emp-
no=1000;

● 	Scenario 13
The test application updates all data in the da-
tabase table using the following SQL statement:
UPDATE empTable SET efname = ‘Frank’ , el-
name = ‘Lowi’ , email = ‘frank.lowi@gmail.com’
, job = ‘DOCTOR’ , mgr = 11, hiredate = ‘1998-

mailto:frank.lowi@gmail.com

5

08-09’ , sal = 88000 , comm = 900 , gender =
‘female’;

● 	Scenario 14
The test application updates only the first record
in the database table using the following SQL
statement:
UPDATE empTable SET efname = ‘Frank’ , el-
name = ‘Lowi ‘, email = ‘frank.lowi@gmail.com’
, job = ‘DOCTOR’ , mgr = 11, hiredate = ‘1998-
08-09’ , sal = 88000 , comm = 900 , gender =
‘female’ where empno=1;

● 	Scenario 15
The test application updates only the middle re-
cord in the database table using the following
SQL statement:
UPDATE empTable SET efname = ‘Frank’ , el-
name = ‘Lowi’ , email = ‘frank.lowi@gmail.com’
, job = ‘DOCTOR’ , mgr = 11, hiredate = ‘1998-
08-09’ , sal = 88000 , comm = 900 , gender =
‘female’ where empno=500;

● 	Scenario 16
The test application updates only the last record
in the database table using the following SQL
statement:
UPDATE empTable SET efname = ‘Frank’ , el-
name = ‘Lowi’ , email = ‘frank.lowi@gmail.com’
, job = ‘DOCTOR’ , mgr = 11, hiredate = ‘1998-
08-09’ , sal = 88000 , comm = 900 , gender =
‘female’ where empno=1000;

●	 Scenario 17
The test application inserts a single record into
the beginning of the database table using the fol-
lowing SQL statement:
INSERT into empTable values (1 , ‘GRANT’ ,

‘John’ , ‘grant.john@gmail.com’ , ‘ENGINEER’
, 10 , ‘1987-01-01’ , 72000 , 200 , ‘male’);

● 	 Scenario 18
The test application inserts 1000 records into
the database table using the following SQL state-
ment in a loop (iteration variable i goes from 1
to 1000):
INSERT into empTable values (+i+ , ‘GRANT’
, ‘John’ , ‘grant.john@gmail.com’ , ‘ENGI-
NEER’ , 10 , ‘1987-01-01’ , 72000 , 200 , ‘male’);

● 	Scenario 19
The test application sums up all the (empno) in
the database table using the following SQL state-
ment:
SELECT SUM (empno) FROM empTable;

● 	Scenario 20
The test application calculates the average of the
(empno) in the database table using the follow-
ing SQL statement:
SELECT AVG (empno) FROM empTable;

● 	Scenario 21
The test application determines the maximum
(empno) in the database table using the follow-
ing SQL statement:
SELECT MAX (comm) FROM empTable;

● 	Scenario 22
The test application determines the minimum
(empno) in the database table using the follow-
ing SQL statement:
SELECT MIN (comm) FROM empTable;

● 	Scenario 23
The test application sorts all the 1000 records

mailto:frank.lowi@gmail.com
mailto:frank.lowi@gmail.com
mailto:frank.lowi@gmail.com
mailto:grant.john@gmail.com
mailto:grant.john@gmail.com

6

in an descending order by the (empno) column,
using the following SQL statement:
SELECT * from empTable ORDER BY empno
desc;

It is important to mention that all the test scenarios
listed above have been chosen to cover different as-
pects of each database’s performance.

3.	Evaluation Metrics

The time (in milliseconds) required to perform each

test scenario by each relational embedded database
has been used as a metric to evaluate practically the
operational performance of each database. Thus, any
database performs a specific test scenario in a less
time is considered as the best one in performance in
that specific test scenario.

4.	 Software/hardware Setup

This study has been setup with software and hard-
ware which their specifications are presented respec-
tively in Table 2 and 3.

Table 2. Software specifications

 Software Version

Java Test Applications
Java JDK 1.8.0_191

NetBeans IDE 8.2

Embedded Databases

H2 1.4.197

HSQLDB 2.4.1

Apache Derby 10.10.2.0

SQLite 3.16.1

Database Driver JDBC 4.0

Operating System Microsoft Windows 7 Home Premium (64-bit)

Table 3. Hardware specifications

 Hardware Detail

Computer System

Laptop Model HP

CPU Type Intel Core i3-2350M

CPU Speed 2.3 GHz

CPU Cores NA
RAM 4 GB
Rating (Windows Experience Index) 4.5

7

EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the obtained results of the experimental performance analysis of the embedded databases
have been presented in Table 4.

Table 4. Databases evaluation results

Scenarios H2
(ms)

HSQLDB
(ms)

Apache Derby
(ms)

SQLite
(ms)

1 10.207 3.499 638.156 559.157
2 92.284 47.722 25095.642 18597.952
3 3.540 0.801 273.981 449.902
4 42.479 3.202 306.288 363.981
5 98.261 13.700 6.758 0.397
6 22.877 6.591 48.806 0.509
7 22.743 6.557 49.839 0.475
8 21.355 5.727 48.563 0.496
9 71.696 28.206 108.176 363.609
10 11.034 2.850 53.718 376.589
11 11.396 3.189 51.339 348.899
12 10.763 2.985 51.395 377.192
13 459.712 280.563 410.435 639.056
14 29.324 176.083 281.881 521.942
15 31.861 172.552 273.856 547.213
16 31.643 168.290 278.517 560.448
17 22.266 3.034 116.303 384.963
18 346.852 538.823 3840.694 353484.962
19 0.00679 0.00776 0.00942 0.00535
20 0.00566 0.0151 0.0153 0.0052
21 0.0059 0.0067 0.0111 0.0053
22 0.00661 0.00835 0.00907 0.0045
23 0.00718 0.0068 0.022898 0.00568

From Table 4 (plain bold font represents the best
performance and italic bold font represents the
worst performance), the following facts have been
observed:		

• 	 In general, HSQLDB and H2 outperformed the
other databases in most test scenarios. However,
HSQLDB outperformed H2 as it never had a
worst performance.

• 	 In general, Apache Derby and SQLite were the
worst ones in performance in most test scenarios
compared to other databases.

• 	 All databases excluding Apache Derby have the
best performance in some scenarios.

• 	 All databases excluding HSQLDB have the worst
performance in some scenarios.

• 	 Making a trade-off between best performance
and worst performance results, HSQLDB can be
considered as the most recommended embedded
database with an acceptable level of performance.

CONCLUSIONS

This paper presented an experimental approach to
evaluate the operational performance of four well-
known open-source relational embedded databases;
namely, H2, HSQLDB, Apache Derby, and SQLite in
terms of creating database files, retrieving, inserting,

8

updating and deleting data. A well-defined test meth-
odology has been proposed and used to achieve the
goal mentioned before. Overall performance evalu-
ation and analysis showed that HSQLDB database
outperformed the others in most evaluation sce-
narios. In Table 3, the summary of this comparison
study has been presented. This study is crucial to help
software developers to select a relational embedded
database with an acceptable level of data storing and
processing capabilities. For the future, some works
could be: (a) applying the evaluation approach used
in this paper to evaluate other open-source embed-
ded databases rather than the ones used in this study.
(b) using more than 1000 records and more than 10
fields to do further performance evaluation of each
of the selected embedded databases. (c) measuring
the impact of using complex data types (e.g. images),
joined tables (also called parent/child tables), nest-
ed queries (e.g. integrating INSERT and SELECT
queries into a single nested query), etc. on the overall
performance of each of the selected embedded da-
tabase.

REFERENCES

1.	 Mingyao X, Xiongfei L. Embedded database
query optimization algorithm based on particle
swarm optimization. Proceedings of the 7th In-
ternational Conference on Measuring Technolo-
gy and Mechatronics Automation; 2015 June 13-
14; Nanchang, China; IEEE; 2015. p. 429-432.

	 https://doi.org/10.1109/ICMTMA.2015.109
2.	 Oh G, Kim S, Lee SW, Moon B. SQLite optimiza-

tion with phase change memory for mobile appli-
cations. Proc. VLDB Endow. 2015; 8(12): 1454-
65. https://doi.org/10.14778/2824032.2824044

3.	 Kang W, Son SH, Stankovic JA. Design, imple-
mentation, and evaluation of a QoS-aware re-
al-time embedded database. IEEE Transactions
on Computers. 2012; 61(1): 45-59.

	 https://doi.org/10.1109/TC.2010.240
4.	 H2 Database Engine (redirect) [Internet]. H2da-

tabase.com. [cited 1 October 2018]. Available
from: https://www.h2database.com

5.	 HSQLDB [Internet]. Hsqldb.org. [cited 1 Octo-
ber 2018]. Available from: http://hsqldb.org/

6.	 Apache Derby [Internet]. Db.apache.org. [cited 1
October 2018]. Available from:

	 https://db.apache.org/derby/
7.	 SQLite Home Page [Internet]. Sqlite.org. [cited 1

October 2018]. Available from:
	 https://sqlite.org/index.html
8.	 Ray S, Simion B, Brown AD. Jackpine: A bench-

mark to evaluate spatial database performance.
Proceedings of the 27th International Confer-
ence on Data Engineering; 2011 April 11-16;
Hannover, Germany; IEEE; 2011. p. 1139-1150.

	 https://doi.org/10.1109/ICDE.2011.5767929
9.	 Kabakus AT, Kara R. A performance evaluation

of in-memory databases. Journal of King Saud
University-Computer and Information Sciences.
2017; 29(4): 520-5.

	 https://doi.org/10.1016/j.jksuci.2016.06.007
10.	Song W, Tao T, Gao T. Performance optimization

for flash memory database in mobile embedded
system. Proceedings of the 2nd International
Workshop on Education Technology and Com-
puter Science; 2010 March 6-7; Wuhan, China;
IEEE; 2010. p. 35-39.

	 https://doi.org/10.1109/ETCS.2010.109
11.	Olson MA. Selecting and implementing an em-

bedded database system. Computer. 2000; 33(9):
27-34. https://doi.org/10.1109/2.868694

12.	Li Y, Manoharan S. A performance comparison
of SQL and NoSQL databases. Proceedings of
the IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing (PAC-
RIM); 2013 August 27-29; Victoria, BC, Canada;
IEEE; 2013. p. 15-19.

	 https://doi.org/10.1109/PACRIM.2013.6625441
13.	Patchigolla VN, Springer J, Lutes K. Embedded

database management performance. Proceedings
of the 8th International Conference on Informa-
tion Technology: New Generations; 2011 April
11-13; Las Vegas, NV, USA; IEEE; 2011. p. 998-
1001. https://doi.org/10.1109/ITNG.2011.171

14.	Tonghui Q, Yang Q, Limin C, Zili S, Xiaowu
C, Dehua L. The design of embedded database
management system for mobile computing. Pro-
ceedings of the International Conference on
Computer Science and Information Processing
(CSIP); 2012 August 24-26; Xi’an, Shaanxi, Chi-
na; IEEE; 2012. p. 1454-1457.

https://doi.org/10.1109/ICMTMA.2015.109
https://doi.org/10.14778/2824032.2824044
https://doi.org/10.1109/TC.2010.240
http://hsqldb.org/
https://db.apache.org/derby/
https://sqlite.org/index.html
https://doi.org/10.1109/ICDE.2011.5767929
https://doi.org/10.1016/j.jksuci.2016.06.007
https://doi.org/10.1109/ETCS.2010.109
https://doi.org/10.1109/2.868694
https://doi.org/10.1109/PACRIM.2013.6625441

9

15.	Batra R. A Primer on SQL. 3rd ed. Leanpub;
2015.

16.	Sarhan QI, Gawdan IS. Web Applications and
Web Services: A Comparative Study. Science
Journal of University of Zakho. 2018; 6(1): 35-
41. https://doi.org/10.25271/2018.6.1.375

17.	Sarhan QI. Internet of things: a survey of chal-
lenges and issues. International Journal of Inter-

net of Things and Cyber-Assurance. 2018; 1(1):
40-75.

	 https://doi.org/10.1504/IJITCA.2018.090162
18.	Sarhan QI, Gawdan IS. Java Message Service

Based Performance Comparison of Apache Ac-
tiveMQ and Apache Apollo Brokers. Science
Journal of University of Zakho. 2017; 5(4): 307-
12. https://doi.org/10.25271/2017.5.4.376

