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ABSTRACT 

Introduction: One of  the major causes of  traffic accidents is driver’s 
drowsiness. For this reason, detecting whether the driver’s eyes are open 
or closed is one of  the critical factors in reducing road deaths. Materials 
and Methods: One way to detect whether your eyes are open or closed 
is to use EEG signals. EEG signals are obtained from the recording of  
electrical activity in the human brain. The present study uses a neural net-
work that is applied to the driver’s EEG signals to detect whether the eye 
is open or closed. The data of  the EEG signals used in this paper consist 
of  14 features that are based on a statistical population of  600 people. 
Results and Discussion: Various neural network algorithms have been 
implemented for clustering these data into two classes of  open or closed 
eyes, which are described in this paper. Perceptron neural network and 
radial base neural network (RBF) are two types of  networks used in this 
paper. Also, in order to improve the execution speed and reduce the oc-
cupied space of  the microcontroller, the genetic algorithm method has 
been used to optimize the fitting function of  Fisher’s discriminant rate, in 
which the optimized function provides better results in the less occupied 
time and space. 

Utilización de la red neuronal para la detección de somnolencia 
basada en señales de EEG y optimización en la selección de sus 
características mediante algoritmo genético
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1. INTRODUCTION

According to the World Health Organization, traffic 
deaths in the world have reached 1.24 million people 
a year, which is expected to increase to 3.6 million 
by 2030. According to global statistics, most road 
accidents are related to the drowsiness of  drivers. 
Studies show that more than 20% of  road casualties 
are caused by driver drowsiness. Therefore, designing 
a system for drowsiness detection is one of  the 
best ways to reduce statistics considerably. Among 
the methods that can be used to detect drowsiness 
is the processing of  vital signals or the processing 
of  driver images. One of  the disadvantages of  
processing driver images is driver’s distraction and 
the unwillingness to permanently record the driver’s 
image.  EEG signals are one of  the vital signals that 

can be used to detect whether the eye is open or 
closed.

Electroencephalography (EEG) is the recording 
of  the brain’s electrical activity by placing surface 
electrodes on the scalp using a non-invasive method. 
In general, in an EEG system, the electrical effect 
of  the activity of  the brain’s neurons is transmitted 
to the device through electrodes placed on the 
scalp, and after amplifying and removing the noise, 
it is recorded and displayed as a time signal. The 
recorded signal can be analyzed directly or after 
computer processing by an expert. The EEG signals 
range between 3 and 70 Hz, and the recording device 
usually includes 8, 16, and 32 channels, which are 
placed on the patient’s scalp by special leads. [1, 2]

Figure 1: Location of  EEG leads on the scalp [3]

Interpretation of  Electroencephalography is 
performed by a neurologist. These results are based 
on the amplitude of  the wave fluctuations and finding 
defect patterns in the Electroencephalography. 
If  the Electroencephalography is normal, these 

waves will have a regular pattern without damage. 
However, in cases where the patient moves or 
open his eye or making another movement, the 
Electroencephalography pattern changes.
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2. METHODS

To detect drowsiness in driving, EEG signals should 
be detected using artificial intelligence methods that 
have high speed and accuracy. Among the methods 
used in this study to classify the open and closed 
state of  the eye are the perceptron neural network 
and the radial base function (RBF).

The data collected in this paper is measured using 
a continuous EEG meter by EEG neuroheadset 
Emotive device for 117 seconds. The statistical 
population is 600 people, with 14 features of  brain 
channels received by leads, and two states of  open or 
closed eyes are used as a data class.

2.1. Artificial neural network

The artificial neural network is a simulation of  the 
human brain that solves many problems without the 
need to know how to analyze them and by finding 
a suitable pattern or mathematical model. Correct 
training is the only requirement for artificial neural 
networks to function properly, which is similar to 
the function of  the neural networks of  the human 
brain, doing a lot of  work without being aware of  

its relationship. Using the neural network algorithm, 
different and complex models can be identified. For 
example, we can do well-structured classifications 
or clustering large data. Different types of  neural 
networks include the perceptron neural network or 
the radial base function neural network (RBF), each 
of  which has some advantages or disadvantages. [4, 
5]

The present study refers to the eyes opening or 
closing using a variety of  neural networks and 
optimization of  the results, speed and reducing the 
number of  features.

2.1.1. Perceptron Neural Network

A perceptron neural network consists of  three layers 
of  input, output, and hidden, each layer containing 
a group of  nerve cells that are generally associated 
with all the neurons in the other layer. One of  the 
most important applications of  neural networks 
is classification of  statistical data. Several neural 
networks have been introduced in classification. The 
relationship between the perceptron algorithm is as 
follows. [6, 7]
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Figure 1:  Location of EEG leads on the scalp [3] 
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                      (1) 

     Where w is the impact value of each of the features called weight and b is the bias and x is the input 
vector. 
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Where w is the impact value of  each of  the features called weight and b is the bias and x is the input vector.

Figure 2: Perceptron neural network [8]
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In perceptron neural network, by changing the 
number of  layers, the number of  neurons, and the 
type of  transform function, the obtained results are 
different. In this paper, this type of  network has been 
used to detect whether the eye is open or closed, in 

which by changing the number of  neurons and the 
type of  transform function, the obtained results and 
its execution time will be different. 
Tansig and Losing functions are different types of  
transform functions.
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Figure 3:  Some examples of conventional transform functions [9] 
 

     Different results from the Perceptron neural network with Tansig and Losing transform functions are 
as follows. The results of the Tansig transform function with the different number of neurons are shown 
in Table 1 and its block form is shown in Figure 4. 

Table 1:  The results of the perceptron neural network using Tansig transform function 

40 30 20 10 Number of neurons 

99.04 98.48 99.25 98.70 Accurate classification rate (% ) 

( 2 )Tan ( ) 1/ (1 ) 1xSig x e   

( )( ) 1/ (1 )xLogsig x e  

                                       (2)

 

 

7 
 

 
Figure 2:  Perceptron neural network [8] 

     In perceptron neural network, by changing the number of layers, the number of neurons, and the type 
of transform function, the obtained results are different. In this paper, this type of network has been used 
to detect whether the eye is open or closed, in which by changing the number of neurons and the type 
of transform function, the obtained results and its execution time will be different.  

     Tansig and Losing functions are different types of transform functions. 

 

                                                             (2) 

                                                          
(3)  

 

Figure 3:  Some examples of conventional transform functions [9] 
 

     Different results from the Perceptron neural network with Tansig and Losing transform functions are 
as follows. The results of the Tansig transform function with the different number of neurons are shown 
in Table 1 and its block form is shown in Figure 4. 

Table 1:  The results of the perceptron neural network using Tansig transform function 

40 30 20 10 Number of neurons 

99.04 98.48 99.25 98.70 Accurate classification rate (% ) 

( 2 )Tan ( ) 1/ (1 ) 1xSig x e   

( )( ) 1/ (1 )xLogsig x e             (3) 

 

7 
 

 
Figure 2:  Perceptron neural network [8] 

     In perceptron neural network, by changing the number of layers, the number of neurons, and the type 
of transform function, the obtained results are different. In this paper, this type of network has been used 
to detect whether the eye is open or closed, in which by changing the number of neurons and the type 
of transform function, the obtained results and its execution time will be different.  

     Tansig and Losing functions are different types of transform functions. 

 

                                                             (2) 

                                                          
(3)  

 

Figure 3:  Some examples of conventional transform functions [9] 
 

     Different results from the Perceptron neural network with Tansig and Losing transform functions are 
as follows. The results of the Tansig transform function with the different number of neurons are shown 
in Table 1 and its block form is shown in Figure 4. 

Table 1:  The results of the perceptron neural network using Tansig transform function 

40 30 20 10 Number of neurons 

99.04 98.48 99.25 98.70 Accurate classification rate (% ) 

( 2 )Tan ( ) 1/ (1 ) 1xSig x e   

( )( ) 1/ (1 )xLogsig x e  

Figure 3: Some examples of  conventional transform functions [9]

Different results from the Perceptron neural network 
with Tansig and Losing transform functions are as 
follows. The results of  the Tansig transform function 

with the different number of  neurons are shown in 
Table 1 and its block form is shown in Figure 4.

Table 1: The results of  the perceptron neural network using Tansig transform function

40302010Number of neurons 

99.0498.4899.2598.70Accurate classification rate(%)

According to CCR values   in Table 1, the best solution is in the range of  30 <number of  neurons <20.
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Figure 4:  Neural network block with Tansig function 

 

     The results of the Logsig transform function with the number of different neurons are shown in Table 
2 and its block form is shown in Figure 5. 
 
Table 2.  The results of the perceptron neural network in the Logsig transform function 

40 30 20 10 Number of neurons 
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Figure 5.  Neural network block with Logsig function 

 

2.1.2.  Radial base function neural network 

     The RBF neural network consists of neural cells that follow radial base functions. The network uses 
Gaussian functions to separate classes. In other words, the output of this system is a linear combination 
of radial base functions and input vectors. Variance and mean Gaussian functions are ordered to model 
the separator line. By changing the number of radial functions, the obtained results and the execution 
time of the plan are different [10, 11]. 
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2.1.2. Radial base function neural network

The RBF neural network consists of  neural cells 
that follow radial base functions. The network 
uses Gaussian functions to separate classes. In 
other words, the output of  this system is a linear 

combination of  radial base functions and input 
vectors. Variance and mean Gaussian functions are 
ordered to model the separator line. By changing the 
number of  radial functions, the obtained results and 
the execution time of  the plan are different [10, 11].

Figure 6: RBF neural network [12]

In RBF neural network, by changing the number of  
radial base functions, the obtained clustering rate is 

changed and the increase of  the number of  these 
functions is effective on its computation time.

Table 3. Results obtained from changing the number of  radial functions

151051The number of radial base functions

10099.9999.8293.24Classification accurate rate(%)

According to the obtained CCR, the best result in 
the number of  radial functions is 15.

Also, by Fisher’s discriminant ratio, we can obtain the 
importance of  each of  14 features in determining 
the open and close state of  the eyes. 

2.2. Fisher’s Discriminant Ratio (FDR)

Fisher’s discriminant ratio is used to determine 
the discrimination ratio of  the classes from each 
other and the effect of  each of  the features on the 
amount of  this discrimination and also is used for 
the possibility of  the features combination for better 
discrimination [13]. In Fisher’s method, for better 
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discrimination of  two classes, the shared region 
between two classes in their probability density 
function should be as small as possible and based 
on the concept of  Gaussian functions parameters, 

it is clear that the higher the mean difference of  the 
classes and the smaller the variance of  the classes, 
the shared region gets smaller and the classes will 
have better discrimination [14].

The Fisher’s Equation for the data with two classes can be expressed as:
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                                      (4)

Where (µ) is the mean indicator and (σ) is the 
variance indicator. The accurate classification 
discrimination rate is improved by increasing the 
Fisher’s discriminant ratio, or the classification of  
two classes gets simpler. 

The second application of  Fisher’s discriminant ratio 
is as the different features of  samples as a linear 
combination form a feature beside each other.  The 
features coefficients in this linear combination will 
change as the Fisher’s discriminant ratio is maximized. 
Thus, besides increasing the discrimination ratio of  
two classes to have better classification, the number 
of  features is reduced and the processing speed of  
the program should be increased [15].

As Fisher’s discriminant ratio is based on the variance 
mean, it can not be optimized, unless we can add 
some values to the features. To find and optimize 
the unknown coefficients, optimization algorithms 
are used.  Before dealing with the second application 
of  Fisher’s discriminant ratio, we should investigate 
one of  the optimization algorithms for minimization 
or maximization of  a function. To do this, one of  
the simplest and accurate algorithms such as genetic 

algorithm is investigated. 

2.3. Genetic algorithm 

Genetic algorithm is based on genetics and the 
survival of  the best individual or its natural 
selection.  

In genetic algorithms, the genetic evolution of  
the live creatures is simulated. In other words, a 
population of  creatures is formed as in nature and 
by imposing on this set, we achieve an optimal set or 
an optimal creature [16,17].

In brief, genetic algorithm is used to estimate 
the variables of  a function for its minimizing. As 
genetic algorithm has minimizing rule,  FDR 
equation in genetic algorithm is written as inversed. 
As the linear combination is based on two features, 
so a general coefficient called the coefficient matrix a 
is considered. This factor is also multiplied directly by 
the features mean when averaging. This coefficient is 
also multiplied using power 2 in the features variance 
when the variance is obtained (Equation 5).

 1 (a'* 1*a+a'* 2*a)=
FDR (a'*( 1- 2)*( 1- 2)'*a)

FitnessFunction σ σ
µ µ µ µ

=
        (5)

Using the genetic algorithm implemented in MATLAB software, the values   of  the unknown coefficient and 
the values of  the fitness function are simulated in the following diagram.
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3. CONCLUSION

The open or closed clustering of  the eye is 
implemented using EEG signal data by the perceptron 
neural network and the radial base functions neural 
network. In perceptron neural network, by changing 
the number of  neurons and the type of  transform 
function, the obtained results change and the best 
solution in the number of  neurons is between 20 and 
30 and the logsig transform function. In the radial 
base functions neural network, by the increase of  the 
number of  radial functions, the accurate clustering 

rate is also increased. Considering the implementation 
of  neural networks on the microcontroller, the 
perceptron neural network can be easily run on 
the microcontroller via simulink environment. To 
reduce the execution time of  the program and the 
space occupied in the microcontroller, the genetic 
algorithm method has been used to optimize the 
fitness function of  the fisher’s discrimination ratio, 
as by multiplying the coefficient matrix obtained by 
the feature matrix , a single feature matrix is obtained. 
The computer used in this simulation has a 2.9 GHz 
Core i7 processor and 8 GB of  RAM.

Table 5: Comparison of  results obtained before and after optimization
Occupied 

space (byte)
The execution time of network 

in microcontroller
Classification 

accurate rate(%)
Number of 

neurons 

13402.2199.4520Non-optimized 
(14 features)

1681.7898.3820
  Optimized 

(single feature)
 

According to Table 5, the optimized results reduce 
the network execution time and space occupied in 
the microcontroller.
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