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ABSTRACT

Introduction: Daily and outbursts mortality composting have been identified as 
one of  the finest methods for final disposal of  animal corpses, but the probable 
threat of  pathogens transmission truly limits its use. Materials and Methods:  
In this study we evaluated the quality and microbiological biosafety of  a compost 
produced in daily mortality experimental unit composting at the Universidade 
Estadual Paulista in the state of  Sao Paulo, Brazil. Settled compost sample was 
evaluated in order to determine the presence and counting of  coliforms and 
Salmonella sp. and the pathotypes of  E. coli STEC, EPEC and EHEC using 
culture and molecular techniques.  The occurrence of  frequent soil borne phyto-
pathogenic fungi was also estimated using selective and differential microbiolog-
ical culture media. Results and Discussion: The occurrence of  pathogenic E. 
coli, Salmonella sp and phytopathogenic fungi were negative. Coliforms level was 
3.05 log10/g. Concussions: The results showed that daily mortality composting 
method is effective to reduce pathogenic microorganisms, however, in order to 
add the product on crops or plants such as vegetables that are for direct human 
consumption, additional tests must be performed to assess the presence of  viral 
pathogens and endospores forming bacteria.

RESUMEN

Introduccion: El compostaje diario ha sido identificado como el mejor método 
para la disposición final de las cadaveres, pero el riesgo potencial de transmisión 
de patógenos limita seriamente su uso. En este estudio evaluamos la calidad mi-
crobiológica y la bioseguridad de un compost producido en una unidad experi-
mental de compostaje de mortalidad diaria en la Universidade Estadual Paulista 
(UNESP), Brasil. Se encontró  que el compost maduro presenta una buena com-
posición de los componentes químicos agrícolas más importantes y además las 
soluciones acuosas no inhiben la germinación de Solanum lycopersicum (tomate) 
y Lactuca sativa (lechuga) ni su desarrollo. Para estudiar la seguridad microbi-
ológica, se evaluaron muestras para determinar la presencia de coliformes, Sal-
monella sp y varios hongos fitopatógenos del suelo (Rhizoctonia spp, Fusarium 
spp, Pythium spp, Phytophthora spp). Estas evaluaciones se realizaron utilizando 
medios de cultivo microbiológicos selectivos y diferenciales. La composición de 
la población bacteriana en el compost maduro también se determinó mediante 
la secuenciación del gen 16SrRNA en Illumina System. La presencia de genes de 
virulencia de E. coli de las bacterias patógenas STEC, EHEC y EPEC  fue verifi-
cada por técnicas moleculares.  Resultados La presencia de Salmonella y hongos 
fitopatógenos fue negativa. Los niveles de coliformes fueron 1160 UFC/kg, y las 
bacterias más comunes observadas por el gen 16S rRNA fueron de los filos Fir-
micutes y Proteobacteria. Los resultados muestran que un método de compostaje 
de mortalidad diaria es eficaz para reducir los microorganismos patógenos, pero 
no acaba con todos ellos. Por tanto, puede utilizarse como fertilizante, excepto 
en cultivos destinados al consumo directo humano o animal. Se deben realizar 
pruebas adicionales para asegurar la ausencia de algunos patógenos como virus.
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INTRODUCTION 

The massive generation of organic waste from human activities, led to necessity for alternatives to reduce 
landfill and promote the recycling, an alternative is the composting; It’s a well-established process that enables 
stabilization and sanitation of a large variety of organic waste. Composting occurs by accelerated microbial 
decomposition of organic matter under aerobic conditions, the final product the compost can be used as: 
soil conditioner to maintain its moisture, reduce erosion and improving runoff, moreover the compost in-
creases the amount of organic carbon in soil by sequestering it from the atmosphere, reducing greenhouse 
gas emissions, additionally it’s highly effective reducing pathogenic microorganisms [9].

Mortality composting began at the end of the 1980’s [24], the principal objective was to prevent the spread 
of infectious diseases and protect the air, water and soil quality . Traditional methods of carcasses disposal 
included: abandonment, favoring the transmission of diseases; burning, producing uncontrolled 
atmospheric emissions and burial that could generate contamination of water bodies without guarantee 
of pathogens elimination . Mortality composting is defined as the temporary animal corpse burial in the 
ground surface, in a mound of material that provides supplementary carbon for allowing decomposition by 
thermophilic microorganisms; the heating of the pile reduces the most pathogens and digests the tissue, 
supplementary carbon absorbs bodily fluids and acts as biofilter to prevent the escape of  odors [21].

Most of the raw materials to be composted contain pathogens, although composting is a well-established 
technology to reduce them, controlling nearly all pathogenic microorganism (viruses, bacteria, fungi, pro-
tozoa and helminths eggs) at acceptably low levels, there are important exceptions like endospore-forming 
bacteria and prions [21], this has limited the mortality compost use due to the risk of poten-tial 
contamination of agricultural products intended for human and animal consumption[35]. The bacterium E. 
Coli is commonly found as commensal in the lower intestinal tract of humans and animals [30], several 
clones of E. coli have acquired virulence factors, enabling adaptation to new niches and producing serious 
diseases as Hemolytic Uremic Syndrome being the leading cause of kidney failure in children [10], whose 
etiologic agent is the Shiga toxin-producing E. coli (STEC). Cattle are healthy carriers of STEC, that 
colonizes their terminal rectum [25]. Recent evidence shows that STEC and Salmonella can colonize plants 
as alternative hosts proliferating in plant tissues, being protected from post-harvest sanitation processes, 
which poses a potential health risk [6]. Enteropathogenic E. coli (EPEC) is an important human pathogen 
and a commensal of intestinal tract in cattle, was found in stool  of healthy and diarrheal calves [15, 34]  

In this study we evaluated the chemical quality and microbiological biosecurity of daily mortality compost 
produced by an experimental composting facility at the Veterinary faculty UNESP Jaboticabal, using 
tree pruning, peanut shells and carcasses of animal daily mortality. Was determined the number of total 
and fecal coliforms, the presence of STEC, EPEC, EHEC and Salmonella, the soil borne 
phytopathogenic fungi, the content of chemical elements of agricultural and environmental 
importance and finally was evaluated the compost maturity

MATERIALS AND METHOD

The study was conducted with samples of the experimental composting facility at the FCAV/UNESP, 
Jaboticabal, SP, Brazil, with geographic coordinates: latitude 21o14’48’’ S, 48o16’44’’ W longitude and 
average altitude of 557 m. The compost components were pruning trees and peanut shells (as freight 
forwarders) 
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and animal corpses (from this study, those who died from infectious diseases were rejected), these waste 
comes from teaching and research activities at the Veterinary Hospital and other university departments. 
The process was carried out for more than 150 days of retention, the highest point temperatures was above 
55°C [20]. 

Sampling 
Compost samples were taken directly  from a compost pile of 400 L at dissimilar points according to the 
figure 1; to each selected point were taken samples in duplicate to diverse depths (20cm, 50cm and 100cm), 
under sterile conditions, this individual samples were subsequently joined and mixed to generate a composite 
sample.

Detection of enteropathogenic, enterohemorrhagic, enterotoxigenic   E. coli strains  and count of 
coliforms
In order to determine and determine the number of total and fecal coliforms was performed the membrane 
filter method by the kit for heterotrophic microorganisms (Alfakit, Florianópolis, Brazil) according to the 
manufacturer’s specifications; briefly, several compost suspensions were prepared in sterile water, starting 
from a suspension (w:v) of compost 1g in 10ml of sterile water and serial dilutions prepared from 1:103, 
1:105 and 1:107. Each suspension was passed through a membrane filter with pore size of 0.45 microns, the 
membrane was subsequently raised in a selective and differential medium at 37 ° C and 41 ° C for 24 to 48 
hours. The CFU count was conducted by representative morphology of bacterial colonies developed on the 
membrane.

Determination of pathotypes of E. coli EPEC,EHEC and STEC was evaluated by PCR, using primers directing 
for the genes stx1, stx2 and eae (Table 1), the metagenomic DNA was extracted using the kit NucleoSpin® 
Soil(Macherey Nagel, Germany) according to manufacturer’s specifications. Adapted conditions used for 
PCR amplification (Clarissa Araújo Borges, et al 2012) were: metagenomic DNA 8.2 ng, 0.4 µl of dNTPs 
[10 mM], 2μL 10x buffer (100 mM Tris-HCl, pH 8.8 at 25 °C, 500 mM KCl, 0.8% [v/v] Nonidet P40), 1.6 
µl MgCl2 [25mM], 0.8 µl [10μM] of  each primer, and 1 unit of  Taq DNA polymerase (Fermentas, Europe).

Table 1. Primers used for determination of pathogenic E. coli

Detection of  soil borne phytopathogenic fungi
Starting compost suspension (w/v), 1g in 10 mL of  sterile water, sequential suspensions were prepared 
in ratios of  1:10, 1:100 and 1:1000, were inoculated them in extremely selective and differential media, in 
duplicate for examination of  plant-pathogenic fungi, according to Table 2.
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Table 2. Selective media used for the determination of  soil borne phytopathogenic fungi

Compost maturity assessment

Based on the methodology of  Zucconi et al (1985), was prepared suspensions in proportions 1:5 1:10 to 1:15, 
from an initial suspension (w/v) of  1 g of  compost in 10 ml of  sterile water. 15 ml of  each suspension were 
placed in petri dishes in duplicate, 5 seeds of  Solanum lycopersicum (tomato) and Lactuca sativa (lettuce) were 
subsequently added per petri dish, the samples were matched with the control (distilled water). All dishes 
were maintained in germination chamber under controlled conditions of  temperature (22°C) and in the dark 
for 5 days. Variations in germinated seeds and elongation of  rootlets was registering daily. (seeds germinated: 
when radicle length was 2mm or more.) The percentage of  relative seed germination (RSG), the relative root 
growth (RRG) and germination index (GI) was determined under follow the Tiquia methods (2000):

RSG = Number germinated seeds in compost x 100
            Number germinated seeds in control

RRG = Mean root length in compost x 100
Mean √root length in control

GI =    (%RSG).(%RRG)
100%

Chemical analyses of  macro and micro elements
The chemical elements examined were those contemplated under the Brazilian regulations. CONAMA 
(Nacional council of  the Environment) resolution No 375/2006 and were made in the soil chemistry 
laboratory at the FCAV/UNESP -Jaboticabal.

RESULTS 

Detection of  enteropathogenic E.coli STEC, EPEC and EHEC and count of  coliforms
The PCR amplification implemented to aiming stx1, stx2 genes responsible for production of  for shiga toxin 
1 and 2, the major virulence determinants in STEC and EHEC and eae gene coding for intimin, protein 
responsible for the attachment of  EPEC to enterocytes, showed the absence in the samples assessed of  the 
enteropatagonic E. coli. (fig.1). The number of  counts of  total and fecal coliforms and Salmonella are show 
in a table 3.
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Figure 1 Agarose gel show PCR amplification gens of  pathogenic E. coli 

Agarose gel electrophoresis 1.3% with ethidium bromide lanes: 1. molecular weight marker 1kb. 2. stx1 
Sample.  3. stx1 positive control. 4. Sample plus stx1 positive control. 5. stx2 Sample 6. stx2 positive control 
7. Sample plus stx2 positive control. 8. eae sample. 9. eae positive control. 10 eae sample plus eae positive
control. 11 negative control.

Table 3. Count of  total and fecal coliforms and Salmonella spp

ND no data, * Brazilian normativity 1Conama Res375/206 2MAPA-SDA in 27/2006.
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Detection of  soil-borne phytopathogenic fungi 
In order to determine the presence of  soil borne phytopathogenic fungi in the samples evaluated. Several 
selective and differential media cultures were used. none of  fungi evaluated was detected or isolated.

Assessment compost maturity and Chemical elements of  agricultural interest
Seed germination and root growth was tests used to assess the maturity of  the compost in plant, the chosen 
plants to test were tomato and lettuce, the results gotten ​​in our study demonstrated that the maturity and stability 
was reached in mortality compost, the germination percentages were above 100%, At wholly concentrations 
assayed  and the grown of  the root above the control was displayed. However, at the concentration [1:10] 
lettuce root reached greatest elongation and also the maximum relative germination percentage, despite, in 
tomato seeds root grown was inversely proportional to the concentrations tested but always exceeding to 
the controls. Tables 4a and 4b. The values of  chemical elements evaluated in a sample are show in a table 5.

Table 4a.  % the relative root growth  

Table 4b. % Relative germination and Germination index
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Table 5. Chemical elements of  agricultural interest assessed in a sample

DISCUSSION 

The group of E. coli STEC is diverse serologically more than 100 serotypes are linked to human infections 
[27], however, the serologic detection based solely on serotype O157: H7 excludes the detection of a 
large number of other pathogenic serotypes. The PCR method has proven to be widely used for the rapid 
detection of EPEC, EHEC and STEC from clinical samples, allowing detection of stx and eae genes from 
microbiologically complex samples [33]. Among the genes stx1 and stx1, stx2 is considered the most 
important virulence factor associated with human disease because a shiga toxin encoded by stx2 is 
approximately 400 times more toxic to mice that encode by stx1 [16], the prevalence in São Paulo  calves of 
stx2  is 50% . 
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The inactivation of pathogenic microorganisms directly dependent on chemical and environmental factors; 
the results observed in this work, based on the absence of genes stx1 stx2 and eae showed that a ratio C/N 
around 20 [20] enable the inactivation of E. coli STEC, EHEC and EPEC, maintaining the thermophilic 
phase by more than a week at temperatures between 55 and 68 °C, in agreement with that observed in 
studies of survival after inoculation of the pathogen in samples of fresh compost. [28], moreover, studies 
have shown that E. coli reaches the soil via manure or runoff from a point source, the bacteria could 
survive, reproduce and move up to two months, threatening this environment [11]. Recent studies have 
shown that pathogenic bacteria may be introduced into the plant in different ways during the growth 
process [12, 13], this increased the concern about the potential internalization of Salmonella spp. and E. coli 
in various fresh vegetables, unless the manure is properly composted, the practice of everyday  application 
of crude manure in the soil is a potential biohazard, capable of  transmitting infectious agents, including 
pathogenic bacteria to humans and animals. 

Most phytopathogenic fungi are sensitive to temperatures above 50 °C when it is maintained for more than 
72h. Suppressing activity against plant soil borne diseases is generally a desirable property for corrective 
substrates added to soils [4,2] this feature present in compost may add value to product. The stability and 
maturation of the compost are integral properties indicating the degree of decomposition of organic matter 
and potential phytotoxicity caused by insufficient composting. Many of the substances found in the 
immature compost could produce reduction of germination rate of seeds. The values   of maturity obtained 
in our study show that was reached maturity and stability of the compost, the germination index was above 
100%, indicating that the compost does not show any toxicity that may inhibit germination. 

Since there is no definitive version of specific regulation for assessing the microbiological biosecurity and  
chemical quality of mortality compost[35]; our microbiological and chemical values   found in samples 
were compared with reference values   of normativity for sewage sludge, organic fertilizers and soil quality 
in the Brazilian legislation. (CONAMA Res 375/2006, MAP-SDA IN.27/2009, CETESB IN 195/2005)

CONCLUSIONS 

Biosecurity agencies in Australia, New Zealand, USA and Canada have recognized the potential 
benefits of using mortality composting like a preferred method for the disposal animal carcass, for 
outbreaks and daily mortality in a livestock and poultry industry. [ 7 ]. The destruction of pathogens 
and control of vectors that can transmit pathogens are crucial for a successful composting operation. The 
use of mortality compost is restricted due to fear of contamination and recontamination by pathogens, 
limiting their application to soils on crops not intended for human or animal consumption. Although the 
compost sample analyzed is free of pathogenic E. coli, Salmonella sp. and soil borne phytopathogenic 
fungi, to ensure safety their application in fresh vegetables cultures intended for human consumption, 
microbiological and molecular determinations should be made in mature compost, soil and plant to proof 
the absence of viral pathogens and endospores forming bacteria like Bacillus anthracis. Based in our chemical 
and microbiological results, the application of compost should be restricted of pasture crops, to crops 
intended for human consumption that requiring cook, and to feed new compost piles of mortality 
compost.
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