

1

E- ISSN: 2346-075X
Innovaciencia 2023; 11(1); 1-23
http://dx.doi.org/10.15649/2346075X.3553
INVESTIGACIÓN CIENTÍFICA

Models of binary classification of the semantic colouring of
texts

Modelos de clasificación binaria de la coloración semántica de textos

Nataliya Boyko1

How to cite this paper: Boyko N., Models of binary classification of the semantic colouring of texts. Innovaciencia 2023;
11(1): 1-23. DOI: 10.15649/2346075X.3553

Publicated: december 1, 2023

ABSTRACT

Introduction: The purpose of the research is to compare different types of recurrent neural
network architectures, namely the long short-term memory and gate recurrent node architecture
and the convolutional neural network, and to explore their performance on the example of binary
text classification. Material and Methods: To achieve this, the research evaluates the performance
of these two popular deep-learning approaches on a dataset consisting of film reviews that are
marked with both positive and adverse opinions. The real-world dataset was used to train neural
network models using software implementations. Results and Discussion: The research focuses
on the implementation of a recurrent neural network for the binary classification of a dataset and
explores different types of architecture, approaches and hyperparameters to determine the best
model to achieve optimal performance. The software implementation allowed evaluating of various
quality metrics, which allowed comparing the performance of the proposed approaches. In
addition, the research explores various hyperparameters such as learning rate, packet sizes, and
regulation methods to determine their impact on model performance. Conclusion: In summary,
the study found that recurrent neural networks, particularly the gated recurrent unit (GRU),
demonstrated superior performance in binary text classification compared to convolutional neural
networks, underscoring the significance of selecting appropriate model architectures and parameter
adjustments for specific datasets.

Keywords: Binary text classification, Long short-term memory, Convolutional neural network,
Gate recurrent node.

INTRODUCTION

Machine learning, in practice, encompasses a variety of techniques that enable machines to learn
from data autonomously, without being explicitly programmed for specific tasks (1,2). This process
involves the machine analysing large datasets to discern patterns, trends, and relationships. The key
aspect of machine learning is its ability to adapt and refine its algorithms based on new data, thus
constantly evolving and becoming more accurate in its predictions or decisions. This self-learning

1 Department of Artificial Intelligence Systems, Lviv Polytechnic National University, 79013, 12 Stepan Bandera Str., Lviv,
Ukraine, nataliya.boy@ukr.net, ORCID 0000-0002-6962-9363.

http://dx.doi.org/10.15649/2346075X.3553
http://dx.doi.org/10.15649/2346075X.3553

2

capability distinguishes machine learning from traditional programming, where tasks are performed
based on predefined rules and algorithms (3,4). In turn, these methods rely on algorithms to learn
from a prepared data set and improve their performance over time. Currently, recurrent neural
network (RNN) (5) and convolutional neural network (CNN) (6) are two popular deep learning
architectures that are commonly used for binary text classification tasks (7). In addition, using
machine learning to recognise handwriting has revolutionised the field of document digitisation,
enabling the fast and efficient conversion of handwritten text into digital formats. This technology
has transformed industries that rely heavily on document processing, such as banking, insurance,
and healthcare (8-12).

The field of machine learning has enormous potential to solve complex problems in various
industries, and using deep neural networks, especially RNNs, is a promising area. Due to their
ability to analyse sequential data and learn complex patterns, machine learning technologies have
transformed areas such as speech recognition, natural language processing and handwriting
recognition (13-16), enabling businesses to achieve greater efficiency and productivity. One of the
most important developments in the field of machine learning is the emergence of deep neural
networks, especially RNNs. RNN are a powerful type of neural network that can be used for a
wide range of tasks, such as speech recognition, natural language processing, and even handwriting
recognition. They work by taking in sequential data and using feedback loops to store information
about previous inputs, allowing them to learn complex patterns over time (17-19).

The model proposed by N.H. Ho et al. (20) uses a RNNs to solve tasks in the field of speech
recognition, which ensures efficient and accurate speech transcription. Similarly, S. Chamishka
et al. (21) present a technique for detecting emotions in real-time using RNNs and feature modelling.
The proposed approach offers an effective solution for accurately detecting emotions from voice
recordings, which provides many opportunities for automated translation, sentiment analysis, and
text generation. One of the common RNN architectures used for binary text classification is the
long short-term memory (LSTM) network. LSTMs are a variant of RNNs that use closed cells to
selectively remember or forget information, allowing them to better capture long-term
dependencies in data. LSTMs have demonstrated impressive results in tasks such as sentiment
analysis and text classification. The work of V. Barzegar et al. (22) presents using conventional RNNs
together with LSTM cells for high-speed structural health monitoring. Another example of a neural
network architecture is CNNs. These neural networks are designed to process gridded data types,
such as images. However, they can be adapted for text classification tasks by treating each word as
a one-dimensional input grid. CNNs work by convolving a filter or kernel on the input and
extracting local features. It allows them to capture important patterns in the input, such as n-grams
of words that often occur together in certain classes of text. The work of L. Yao et.al. (23) presents
a new approach to text classification using convolutional graph networks. By introducing the graph
structure into the learning process, the proposed model captures the inherent connections between
words and ensures competitiveness in text classification tasks.

Recent studies have demonstrated that both CNN and RNN can be effective models for the
problem of binary classification of semantic text colouring. A detailed analysis of these networks
can be useful for researchers and practitioners working on natural language processing tasks and
trying to choose the right model for their needs. A similar analysis was performed in the work of
W. Yig et al. (24), where they provide an overview of both CNN and RNN, including their
architectures and how they can be used for natural language processing. RNNs excel at handling
sequential data, such as text or time series, due to their memory that captures data order and
context. They are used in tasks like language modelling, text generation, and speech recognition
but face challenges with vanishing gradients. In contrast, CNNs specialize in processing grid-like
data, primarily images, for tasks like image classification and object detection. They excel at pattern

3

recognition by applying filters and capturing spatial hierarchies. RNNs have internal memory, while
CNNs focus on spatial learning. These networks are fundamental in deep learning, with RNNs in
natural language processing and CNNs in computer vision tasks.

The aim of this study is to evaluate and compare the performance of different neural network
architectures for the task of classifying semantic coloring in texts, with the ultimate goal of
identifying the optimal architecture for this specific task. This study is important because it
compares various neural network architectures for binary text classification using a real-world
dataset. It evaluates their performance, explores hyperparameters, and provides practical
recommendations. This research contributes to the field by offering insights into architecture
selection and hyperparameter tuning, making it valuable and novel.

MATERIALS AND METHODS

ANALYSING THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS

It is known that RNNs have a chain-like architecture consisting of repeating cells. They can be
either a single neuron or a sequence of several neurons. For example, a basic RNN cell contains a
single layer with an activation function𝑡𝑡𝑡𝑡ℎ𝑛𝑛, which is quite simple in terms of structure. Suppose
there is a sequence of input data {𝑥𝑥𝑡𝑡}𝑡𝑡=1𝑇𝑇 . In the context of text analysis, 𝑥𝑥𝑡𝑡 = 𝑥𝑥12, … , 𝑥𝑥𝑛𝑛2 can
represent the vector form of the 𝑡𝑡-th word in the sequence. For a sequence of elements, 𝑇𝑇of a
RNN are required. Significantly, the output of the 𝑡𝑡-th cell is fed as input to the 𝑡𝑡 + 1-th cell,
establishing a chain-like structure that facilitates processing of the entire input sequence (Figure 1).

Figure 1. Scheme of RNN cells

Source: compiled by the author.

The word vectors are processed by the cells using the ratio specified in formula (1):

𝐻𝐻𝑡𝑡 = tanh(𝑈𝑈𝑡𝑡 ∙ 𝑥𝑥𝑡𝑡 + 𝑊𝑊 ∙ 𝐻𝐻𝑡𝑡−1 + 𝑏𝑏). (1)

Notably, the activation function used in RNMs should not be limited to 𝑡𝑡𝑡𝑡ℎ𝑛𝑛. Other common
options include sigmoid, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥or other variants. In addition, the weights 𝑈𝑈𝑡𝑡 associated
with each element of the sequence 𝑡𝑡 are unique, while the weights ∀𝑡𝑡 remain constant for all
elements. During the training of the neural network, the weights are adjusted using the back-
propagation algorithm. After the RNN layer, the next output layer can produce a sequence of
outputs, denoted as {𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑇𝑇 , with the activation function 𝑠𝑠 applied to each. Thus, the output
forecasts are determined by formula (2):

𝑦𝑦�𝑡𝑡 = V ∗ 𝑠𝑠(𝐻𝐻𝑡𝑡). (2)

The loss function Е can be defined as (3):

𝐸𝐸𝑡𝑡(𝑦𝑦𝑡𝑡,𝑦𝑦�𝑡𝑡) = −𝑦𝑦𝑡𝑡𝑙𝑙𝑠𝑠𝑙𝑙𝑦𝑦�𝑡𝑡, (3)

4

hence (4):

𝐸𝐸(𝑦𝑦𝑡𝑡,𝑦𝑦�𝑡𝑡) = ∑ 𝐸𝐸𝑡𝑡(𝑦𝑦𝑡𝑡,𝑦𝑦�𝑡𝑡)𝑇𝑇
𝑡𝑡=1 = −∑ 𝑦𝑦𝑡𝑡𝑙𝑙𝑠𝑠𝑙𝑙𝑦𝑦�𝑡𝑡𝑇𝑇

𝑡𝑡=1 . (4)

To start using gradient descent to update the weights of a neural network, it is very crucial to
calculate the gradients of the loss function with respect to 𝑈𝑈, 𝑊𝑊, and 𝑉𝑉. In particular, when working
with 𝑉𝑉, the error gradient at step 𝑡𝑡 depends solely on 𝑦𝑦𝑡𝑡, 𝑦𝑦�𝑡𝑡, and 𝐻𝐻𝑡𝑡 (5, 6):

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

𝑇𝑇

𝑡𝑡=1
, (5)

 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝐻𝐻𝑡𝑡

𝜕𝜕𝐻𝐻𝑡𝑡
𝜕𝜕𝜕𝜕

. (6)

However, for 𝑊𝑊 and 𝑈𝑈, when estimating the error gradient, 𝐻𝐻𝑘𝑘,𝑘𝑘 < 𝑡𝑡 (7) should be considered:

𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝐻𝐻𝑡𝑡

𝜕𝜕𝐻𝐻𝑡𝑡
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝑡𝑡

𝑘𝑘=1

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝐻𝐻𝑡𝑡

𝜕𝜕𝐻𝐻𝑡𝑡
𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝑡𝑡

𝑘𝑘=1

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝐻𝐻𝑡𝑡

(� 𝜕𝜕𝐻𝐻𝑗𝑗
𝜕𝜕𝐻𝐻𝑗𝑗−1

)
𝑡𝑡

𝑗𝑗=𝑘𝑘+1

𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝜕𝜕

. (7)

The derivatives of tahn and sigmoid are limited to one, and their values approach zero as the
absolute value of the input data increases. It leads to gradients close to zero, and as the distance
between the 𝑡𝑡th and 𝑘𝑘th objects increases, the influence of the 𝑘𝑘th object on the weight update
decreases. On the other hand, using other activation functions can result in gradients with absolute
values greater than one, causing them to grow infinitely. As a result, distant objects may have a
greater impact when weights are updated. This problem is known as the gradient
damping/explosion problem, and it is not limited to RNN but is present in deep neural networks.

LONG SHORT-TERM MEMORY

Long Short-Term Memory Networks, known as LSTMs, are a unique type of neural network that
is capable of identifying both short-term and long-term relationships. Similar to RNN, LSTMs
have a circuit-like structure; however, their recurrent cellular structure is more complex. It consists
of four neurons connected in a certain way. In Figure 2, the neurons are marked with yellow blocks,
while the pink circles represent the coordinate linear operations.

Figure 2. Structure of LSTM cells

Source: compiled by the author.

Consider the structure of the LSTM cell in more detail. Its cell consists of two recurrent
components – the output vector 𝐻𝐻𝑡𝑡 and the state vector 𝐶𝐶𝑡𝑡. Unlike other RNNs, the LSTM cell
does not use an activation function in component 𝐶𝐶𝑡𝑡. The state vector 𝐶𝐶𝑡𝑡 is transmitted directly
through the entire circuit and is involved in only a few linear transformations. As a result, the
resulting value has no blurring in time and the gradient is not lost during the network training
process (Figure 3).

5

Figure 3. LSTM structure cell

Source: compiled by the author.

The LSTM cell has the ability to discard information from its repetitive components, which is
controlled by special structures known as filters. The first step in the LSTM process involves
determining what information can be removed from the state vector. This decision is made by a
neuron with a sigmoidal activation function called the “forgetting filter layer” (Figure 4).

Figure 4. Schematic representation of the filtering stage of the LSTM cell

Source: compiled by the author.

This structure takes a vector (𝐻𝐻𝑡𝑡−1, 𝑥𝑥𝑡𝑡) as an input parameter and returns another vector 𝑠𝑠𝑡𝑡 ∈
 [0, 1]𝑚𝑚, where 𝑠𝑠 is the dimension of vector 𝐶𝐶𝑡𝑡. Each component of 𝐶𝐶𝑡𝑡−1 corresponds to its own
component of the vector 𝑠𝑠𝑡𝑡 , which can take values from 0 to 1, where 1 corresponds to a full save
command, and 0 to a full exclusion command. The appropriate filter is determined from equation
(8):

 𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (8)

The next step in LSTM involves determining what new information should be stored in the state
vector. This process consists of two separate parts. First, the input filter layer is used to identify
the components of the state vector that need to be updated in the update estimate. This level uses
a sigmoidal activation function (Figure 5).

Figure 5. Schematic representation of the information processing stage of an LSTM cell

Source: compiled by the author.

6

After that, layer 𝑡𝑡𝑡𝑡𝑛𝑛ℎ establishes a vector of new values to replace the components of the state
vector that need to be updated. The input to both layers is a vector (𝐻𝐻𝑡𝑡−1, 𝑥𝑥𝑡𝑡), while the output is
a vector with dimension 𝑠𝑠. Mathematically, these processes can be described as follows (9, 10):

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖), (9)

 �̃�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶), (10)

The updated state vector 𝐶𝐶𝑡𝑡 is obtained from equation (11) (Figure 6):

 𝐶𝐶𝑡𝑡 = 𝑠𝑠𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡. (11)

Figure 6. Schematic representation of the stage of updating the state vector

Source: compiled by the author.

The last step is to update the input vector using the following filters (12, 13):

 𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜), (12)

 ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡∗ 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝐶𝐶𝑡𝑡). (13)

First, using the relation (12), the information from the state vector is calculated to be transferred
to the output vector. Then, using (13), the result is processed by layer 𝑡𝑡𝑡𝑡𝑛𝑛ℎ. The output values are
in the range [-1, 1] and are multiplied with the output values of the sigmoidal layer co-ordinately,
eliminating unnecessary information. This process is presented graphically in Figure 7.

Figure 7. Schematic representation of the input vector update stage

Source: compiled by the author.

Notably, in one embodiment of LSTM, connections within the cell are additionally used, as
demonstrated in Figure 8.

7

Figure 8. Schematic representation of an LSTM cell by adding so-called “peephole
connections”

Source: compiled by the author.

Mathematically, they are described by the following relations (14-16):

 𝑠𝑠𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�, (14)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖), (15)

 𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜). (16)

As a result, the filter layers have access to the state vector using vector [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] instead of
[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] as input.

VALVE RECURRENT ASSEMBLY

Another interpretation of LSTMs is gated recurrent units (GRU), which replace the state vector
with an output vector that passes directly through the circuit without applying any activation
functions (Figure 9). In addition, instead of separate forgetting and input filters, this modification
combines them into a single update filter 𝑧𝑧𝑡𝑡.

Figure 9. Schematic representation of the GRU-based architecture

Source: compiled by the author.

In the GRU-based system, a cell contains a set of three neurons. Assuming that the input to the
sigmoid layer is vector [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡], the output is the updated vector 𝑧𝑧𝑡𝑡, whose dimension is the same
as the initial vector ℎ𝑡𝑡−1 (17):

 𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]). (17)

Then, using another sigmoidal layer, the reset vector 𝑟𝑟𝑡𝑡 (18) is constructed in a similar way:

8

 𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]). (18)

It is necessary to determine the components of vector ℎ𝑡𝑡−1 and their concentration required to
establish an update of the original vector. The last neuron, in turn, contains the activation function
𝑡𝑡𝑡𝑡𝑛𝑛ℎ (19):

 ℎ�𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊 ⋅ [𝑟𝑟𝑡𝑡∗ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]). (19)

The new value of the state vector can be obtained from equation (20):

 ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡∗ℎ�𝑡𝑡 . (20)

As a result, a fairly simpler model can be obtained compared to the usual Global Consumer
Community Platform (GCCP).

CONVOLUTIONAL NEURAL NETWORK

CNNs are known to have made significant progress in image classification and are a fundamental
component of various computer vision systems, such as self-driving cars and automatic tagging of
Facebook photos. However, they are now used in natural language processing applications.
Typically, a CNN consists of convolutional, pooling (sub-sampling), and fully connected output
layers in any order. A network can contain a combination of all three types of layers. In the
convolutional layer, neurons that use the same weights are combined into feature maps, and each
neuron in the feature map is connected to a part of the neurons in the previous layer. When the
network is calculated, it appears that each neuron performs a convolution of some area of the
previous layer (which is determined by the set of neurons associated with this neuron). Unlike a
fully connected convolutional layer, in which a neuron is connected to only a limited number of
neurons in the previous layer, a convolutional layer is similar to a convolutional operation, where
only a small weight matrix (convolution kernel) is used and migrates throughout the processed
layer. Another feature of the convolutional layer is that it slightly reduces the image due to edge
effects. Image pixels, which are conventionally used as CNN inputs, can be replaced by sentences
or documents represented in a matrix. In this case, each row of the matrix will correspond to one
word or character. A diagram of this architecture is presented in Figure 10.

Figure 10. An example of CNN visualization for natural language processing

Source: compiled by the author.

9

As a rule, the input data is a vector representation of a word, using the Word to Vector (word2vec)
or Global Vectors for Word Representation (GloVe) methods. Word2Vec, based on neural
networks, learns word representations by predicting context words from target words or vice versa,
resulting in dense vectors where similar words are closer in the vector space. GloVe, on the other
hand, leverages global word co-occurrence statistics to generate word embeddings by factorizing a
co-occurrence matrix, leading to vectors that capture semantic relationships between words.

For example, for a 10-word sentence, using 100-dimensional embedding, the output is a 10×100
matrix. The above-mentioned architectures, including RNNs, CNNs and other models, have been
implemented using software tools and frameworks. During the implementation process, various
parameters such as speed and accuracy were carefully measured and evaluated to determine the
performance of these architectures when applied to practical scenarios. By making careful
comparisons of these architectures in terms of speed and accuracy, valuable insights were gained
into their performance characteristics and suitability for different applications. This empirical
analysis helped to select the most appropriate model for a particular problem domain, considering
factors such as computational efficiency and prediction accuracy.

RESULTS

DEMONSTRATION OF RNN OPERATION

The Python programming language and the TensorFlow machine learning library were used as
development tools. Python is an interpreted high-level programming language that has become one
of the most popular programming languages for machine learning due to its simplicity, readability,
and large number of available libraries. Its syntax is intuitive and easy to learn, making it accessible
to developers of all skill levels. In addition, Python is an open-source language, which means that
anyone can contribute to its development and improvement. TensorFlow – is an open-source
software library developed by Google for machine learning applications such as neural networks.
It provides an easy-to-use interface for creating, training, and deploying machine learning models.
TensorFlow allows establishing of complex models with many layers, making it a popular choice
for deep learning applications. It can run on a variety of devices, including CPUs, GPUs, and even
mobile devices. In addition, TensorFlow supports distributed computing, which allows training
and scaling large models across multiple machines. The library is based on C++ but has interfaces
for Python, C++, Java. In general, TensorFlow – is a powerful and flexible tool for creating
machine learning models in Python.

The development of a neural network involved several key steps, including data pre-processing,
model design and architecture, training, evaluation, and deployment. The process of developing a
neural network using Python and TensorFlow begins with data preparation. The dataset is cleaned
and pre-processed. The data is then divided into training, validation, and testing sets for evaluation
purposes. During the forward propagation phase, the input data is fed into the network and
computations are performed layer by layer. Each layer applies its activation function to establish
an output that serves as an input to the next layer. To evaluate the performance of the network, a
loss function is calculated to measure the discrepancy between the predicted outputs and the actual
targets. Based on the evaluation results, the model can be tuned by making adjustments to the
architecture, and hyperparameters, or using regularisation techniques to prevent overfitting.
Commonly used loss functions include mean square error or cross-entropy loss. Backpropagation
is then used to compute gradients of the loss function for the network parameters. These gradients
are used to update the weights and offsets to minimise losses and improve model performance.
Once the training process is complete, the model is evaluated using a validation or testing suite.
Performance metrics such as precision, accuracy, recall, and F1 score are calculated to evaluate the
model’s performance. Throughout the entire development process, Python and TensorFlow

10

provide a powerful framework for establishing and training neural networks. They offer a wide
range of tools, libraries, and application programming interfaces (APIs) that simplify
implementation and ensure efficient computation.
The dataset used in this machine learning task is derived from film review data obtained from
RottenTomatoes, a popular online film review platform. This dataset contains 10662 reviews with
an even distribution of positive and negative opinions. Specifically, half of the opinions are positive
and the other half are negative. To classify the opinions as positive or negative, the snippets of
opinions from the RottenTomatoes webpages that were labelled “fresh” were considered positive,
while those labelled “rotten” were considered negative. Using this dataset, machine learning models
can be trained to accurately classify the sentiment of film opinions (Figure 11).

Figure 11. Excerpts of opinions from the Rotten Tomatoes website

Note: The first opinion contains a positive review (marked “fresh”), the second – a negative one
(marked “rotten”).

Source: compiled by the author.

The data are split into 2 files – rt-polarity.pos contains 5331 positive excerpts, rt-polarity.neg
contains 5331 negative excerpts (Table 1).

Table 1. Dataset fragments
rt-polarity.pos rt-polarity.neg

therockisdestinedtobethe 21st century’snew
“conan” andthathe’sgoingtomake a
splashevengreaterthanarnoldschwarzenegge
r, jean-claudvandammeorstevensegal.
thegorgeouslyelaboratecontinuationof
“thelordoftherings” trilogyissohugethat a
columnofwordscannotadequatelydescribec
o-
writer/directorpeterjackson’sexpandedvisio
nof j. r. r. tolkien’smiddle-earth.
effectivebuttoo-
tepidbiopicifyousometimesliketogotothemo
viestohavefun, wasabiis a goodplacetostart.
emergesassomethingrare,
anissuemoviethat’ssohonestandkeenlyobser
vedthatitdoesn’tfeellikeone.
thefilmprovidessomegreatinsightintotheneu
roticmindsetofallcomics --
eventhosewhohavereachedtheabsolutetopo
fthegame.
offersthatrarecombinationofentertainmenta
ndeducation.

simplistic, sillyandtedious.
it’ssoladdishandjuvenile,
onlyteenageboyscouldpossiblyfinditfunny.
exploitativeandlargelydevoidofthedepthorsophisticati
onthatwouldmakewatchingsuch a
graphictreatmentofthecrimesbearable.
[garbus] discardsthepotentialforpathologicalstudy,
exhuminginstead,
theskewedmelodramaofthecircumstantialsituation.
a
visuallyflashybutnarrativelyopaqueandemotionallyvap
idexerciseinstyleandmystification.
thestoryisalsoasunoriginalastheycome,
alreadyhavingbeenrecycledmoretimesthani’dcaretoco
unt.
abouttheonlythingtogivethemoviepointsforisbravado
--
totakeanentirelystaleconceptandpushitthroughtheaud
ience’smeatgrinderonemoretime.

Source: compiled by the author.

11

The dataset contains approximately 20000 unique words, which is quite challenging to process and
analyse. In addition, the dataset did not have a predefined split between training and test data. Thus,
to make sure that the model is high-performing and generalizable, 10% of the data was randomly
selected for testing, while the remaining 90% was used for training. The main purpose of the neural
network is to classify each opinion as positive or negative, which is a binary classification problem.
It allows determining the sentiment of the text and understanding how viewers perceive films. This
task is crucial in the film industry, as it allows filmmakers to assess the audience’s reaction to their
work and make informed decisions accordingly. Data pre-processing steps:

1. Loading positive and negative sentences from raw data files.
2. Data cleaning. Remove special characters and double quotes. Regular expressions are used to
do this, and the pattern search method in the feed replaces all unnecessary characters with an empty
string. In addition, the feed must be reduced to lowercase letters. To do this, use the methods of
converting characters to a specific case.
3. Limiting the length of each sentence to the maximum possible length of 59 words. Adding
special tokens <PAD> to shorter sentences, as they need to be of the same length for efficient
data processing.
Indexing each word with a specific integer from 0 to 18765. Each sentence is converted into a
vector of integers (Table 2).

Table 2. Data processed

Cleaned data Data after indexing
therockisdestinedtobethe 21st century’s
newconanandthathe ‘s goingtomake a
splashevengreaterthanarnoldschwarzenegger,
jeanclaudvandammeorstevensegal

[1 2 3 4 5 6 1 7 8 9 10 11 12 13 14 9 15 5 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0]

thegorgeouslyelaboratecontinuationofthelordoftherings
trilogyissohugethat a
columnofwordscannotadequatelydescribecowriterdirect
orpeterjackson ‘s expandedvisionof j r rtolkien ‘s
middleearth

[1 31 32 33 34 1 35 34 1 36 37 3 38 39
13 17 40 34 41 42 43 44 45 46 47 48 49
9 50 51 34 52 53 53 54 9 55 56 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0]

effectivebuttootepidbiopic effectivebuttootepidbiopic
[57 58 59 60 61 0
0
0]

ifyousometimesliketogotothemoviestohavefu, wasabiis
a goodplacetostart

[62 63 64 65 5 66 5 1 67 5 68 69 70 3 17 71 72 5 73 0 0
0
0 0 0 0 0]

emergesassomethingrare, anissuemoviethat ‘s
sohonestandkeenlyobservedthatitdoesn’tfeellikeone

[74 75 76 77 78 79 80 13 9 38 81 12 82 83 13 84 85 86
87 65 88 0
0 0 0 0 0 0 0 0 0 0]

thefilmprovidessomegreatinsightintotheneuroticmindse
tofallcomicseventhosewhohavereachedtheabsolutetopo
fthegame

[1 89 90 91 92 93 94 1 95 96 34 97 98 19 99 100 68 101
1 102 103 34 1 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0]

offersthatrarecombinationofentertainmentandeducation
[105 13 77 106 34 107 12 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0]

perhapsnopictureevermadehasmoreliterallyshowedthatt
heroadtohellispavedwithgoodintentions

[109 110 111 112 113 114 115 116 117 13 1 118 5 119
3 120 121 71 122 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

steersturnsin a snappyscreenplaythatcurlsattheedgesit ‘s
socleveryouwanttohateitbuthesomehowpullsitoff

[123 124 125 17 126 127 13 128 129 1 130 84 9 38 131
63 132 5 133 84 58 14 134 135 84 136 0 0 0 0 0 0 0 0 0
0 0]

Source: compiled by the author.

12

The analysis of the above data on the example of one training step of a conventional RNN
was performed using the formulas described in the second section. First, the weights 𝑈𝑈, 𝑊𝑊, 𝑉𝑉 of
the neural network were initialised randomly using the standard normal distribution (21-23):

U=[[-2.00456907e-03, -8.34052357e-04, 6.10279870e-04,
2.98218282e-04, 9.35577816e-04, -2.73085004e-03,
1.13186633e-03, 2.93236646e-04, 1.92821343e-04,

1.45058171e-03, -3.73766472e-04, -4.42388945e-04],
[-2.70303440e-04, 3.22807853e-04, 6.87949363e-04,
1.24186513e-03, 7.46562625e-04, 1.86563700e-04,

-9.20280693e-04, 9.53312541e-04, -1.10615129e-03,
-1.10598617e-03, -8.35331015e-04, -1.87544232e-03],
[5.01363176e-04, -9.24946704e-04, 2.13172721e-03,
-2.30123171e-03, 1.18675087e-03, 8.67312143e-04,
4.67885259e-04, -1.90070662e-03, -1.07344439e-04,
-6.60950010e-04, -9.38031675e-04, 1.20613743e-03],
[-1.04895964e-03, -3.54182117e-05, 1.20204007e-03,
-1.49670460e-03, -1.78542349e-05, 5.55857297e-04,
4.86410704e-05, 5.80639118e-04, 4.02617033e-04,

-4.98332578e-04, -6.88800337e-04, -2.04081040e-03],
[5.98590384e-04, -7.36782837e-04, 8.56020828e-04,
-4.00714846e-04, -1.07904359e-03, -5.26005845e-05,
-2.67968309e-04, 2.74468294e-04, -2.34090581e-04,
1.11609294e-03, -1.00539672e-03, -4.84710832e-04],
[-1.51924959e-03, 1.64434894e-03, 1.56213856e-04,
-1.35289399e-03, 4.88548883e-05, 8.84324689e-04,
-6.45691326e-04, -8.06647654e-04, 6.94644673e-04,
3.83385077e-05, -1.08716131e-03, -5.18897641e-04],
[4.86007242e-04, 3.82236344e-04, -5.03780216e-04,
-5.38758226e-04, -6.90489313e-04, 8.36563848e-04,
-2.34637708e-03, 1.44254311e-03, -4.16121256e-05,
4.07545900e-04, 9.08219628e-04, -1.38770469e-03],
[9.26889193e-04, -9.10883671e-04, -1.24136589e-03,
6.46345510e-04, -1.08363613e-04, 3.11623071e-04,
1.44847470e-03, 1.75157354e-03, -1.41342266e-03,
-3.16462417e-04, 5.04558895e-05, 1.29151023e-03],
[6.76194441e-04, -7.30576819e-04, 1.17405100e-03,
-5.22469350e-04, 1.42111622e-03, -9.51555785e-04,
-2.03822068e-03, -4.65060799e-04, -2.67421725e-03,
1.98944518e-03, -9.24845568e-05, -5.08209844e-04],
[8.84437086e-04, 4.74557193e-04, -8.22125491e-04,
-5.05219400e-05, 1.45807120e-03, 6.08441881e-04,
-2.18019454e-04, 1.24282506e-03, 6.48709211e-05,

-1.49215696e-03, -8.20555645e-04, 3.76936320e-04],
[-1.66276520e-06, 7.58396673e-04, -8.92426805e-04,
9.28591574e-04, -8.14924826e-04, 7.81197309e-04,
3.07809045e-04, -3.29337032e-03, -9.40217371e-04,

-1.00550139e-03, -3.65265185e-04, -2.24458795e-04],
[-2.44486783e-04, 1.23370027e-04, -7.45227268e-04,
-5.77545648e-04, 4.89536133e-04, 5.91256474e-04,

-1.78993055e-03, -2.76947331e-03, -7.93885838e-06,
1.94844011e-04, -1.99312866e-04, 3.38654328e-04]], (21)

W=[[-7.43501058e-04, 1.13945632e-03, 2.71596508e-03,

6.83213773e-04, 3.67918030e-04, -1.24179678e-03,
4.21751712e-04, 1.50503537e-03, -8.56542758e-04,
1.00762307e-04, 7.17365791e-04, 1.51315637e-03,

6.09443791e-04, -1.01827016e-03, -3.78503815e-04,
-1.70011665e-03, -8.91450449e-04, 1.94388497e-04],
[-1.72146197e-03, 5.67313869e-04, 7.92918946e-04,
-9.29384449e-04, -1.62428072e-04, 3.48908579e-04,

13

-2.39202090e-04, 5.67652365e-04, -2.59817590e-04,
1.63069431e-03, -2.10457961e-03, 7.18617451e-04,
1.13670752e-03, 5.54216340e-04, -2.06734280e-03,
6.09246538e-04, -7.71383392e-04, 3.68883349e-04],
[-1.74287629e-04, 2.14087598e-03, 1.35637737e-03,
-7.34809974e-04, -9.11367887e-04, 1.57182967e-04,
-1.53899671e-03, 3.40326624e-04, -1.60058378e-04
 -1.56729154e-03, 4.25455264e-04, 5.87848314e-05,
-5.00407737e-05, -4.05929107e-04, -1.62461135e-03,
1.20197458e-03, -1.76014949e-03, -8.34966591e-04],
[6.09153394e-04, 3.73298147e-04, 7.59758625e-04,
3.76298435e-04, -5.20334544e-04, -7.35782230e-04,
-1.04365545e-03, 2.56117182e-04, -2.03382281e-03,
1.67316466e-03, -1.00568158e-03, -8.29733445e-04,
-1.02387087e-03, -4.35958028e-04, 3.68695265e-04,
5.15849235e-04, 1.36106059e-03, 4.06744080e-04],
[8.75547059e-05, 1.00182012e-03, 8.29474157e-04,
-1.47439758e-04, 2.36613439e-05, -6.89341343e-04,
5.83526975e-04, -2.43163973e-05, -1.67937825e-04,
1.75877924e-04, 1.65482455e-03, -5.83321893e-04,

-1.20862307e-03, -1.13386203e-03, -1.04186466e-03,
-6.91273610e-04, -1.14799489e-04, 4.86630674e-04],
[-1.30327635e-03, -1.61791617e-03, -5.67636990e-04,
6.46376907e-04, 8.88009287e-04, -1.29191249e-03,
1.41325038e-03, 2.17118457e-03, 1.01552883e-03,

1.48617835e-03, -1.48429087e-03, -2.03796678e-04,
6.52084473e-04, 1.31820340e-03, -1.83054445e-03,

1.39339255e-03, -1.80003356e-04, -5.04561851e-04],
[9.68814534e-04, -4.25911385e-04, -7.15609093e-04,
1.55393186e-03, 1.14034155e-03, -8.26087630e-04,
-2.67735732e-04, 6.87901233e-04, 1.16043724e-03,
-5.63456218e-04, -1.54130581e-05, 7.02852308e-04,
3.45119565e-04, 1.49392689e-04, 1.97596737e-03,

-2.30287667e-05, 8.42035270e-04, -1.34766097e-03],
[-1.41206943e-03, 5.03993973e-05, -6.73991833e-04,
-1.45240979e-03, 8.62530937e-05, -1.17570864e-03,
-3.96391720e-04, -7.78602663e-05, 1.35673320e-04,
-1.68444191e-04, -2.88154553e-04, 2.60281519e-04,
-5.44921102e-04, 9.19103268e-04, 8.37950658e-04,

-1.91479886e-03, 7.28326869e-04, -1.87211398e-03],
[1.27126127e-03, -7.94735334e-04, -6.09872172e-04,
7.88531050e-04, -5.31216003e-04, 3.65503364e-04,

-7.20699580e-04, -1.92067965e-03, -8.26947417e-04,
-5.24688360e-04, -2.32615824e-04, 7.92341691e-04,
1.80021848e-03, 1.57361850e-03, 6.23740703e-04,

1.14223262e-03, -7.36898731e-04, -1.72218062e-03],
[1.24967947e-03, -3.99473435e-04, 2.02734792e-03,
-3.76105023e-04, -1.74571177e-04, -5.20932309e-04,
1.10343809e-03, -2.17150734e-04, -1.65242278e-05,
7.72270978e-04, -1.38699112e-04, -1.07715531e-03,
-9.66706468e-05, -1.17833491e-03, -7.70796009e-04,
-1.30135852e-03, -1.46655035e-04, -2.15277291e-04],
[3.62839955e-04, 1.42670053e-03, 1.20191656e-03,
-3.75126260e-04, 1.64015236e-04, -9.07869068e-04,
2.77180986e-03, -2.10635378e-04, -1.72432980e-04,
7.83437578e-04, -1.14828276e-03, -8.62950857e-04,
1.60885201e-03, 7.71301617e-04, 1.38947992e-03,

7.78340340e-05, -1.03855478e-03, -8.72731154e-04],
[-5.37873976e-04, -7.92708678e-04, -7.76586129e-04,
-1.89621443e-03, 1.90244359e-03, -1.53229409e-03,
-9.95312560e-04, -3.34126850e-04, -5.95603171e-04,
4.39441070e-04, -1.27540524e-04, 1.16436721e-03,

14

-1.13342838e-04, -7.81671085e-04, 1.28612465e-03,
-3.85553064e-04, 1.84815410e-03, 4.05814493e-04]], (22)

V=[[2.45870624e-04, -3.87342067e-05, -4.04186783e-04,

1.28670309e-03, 2.51081193e-04, 8.24950409e-04,
-1.54277976e-03, -5.44293303e-04, -1.49104413e-03,
1.46696367e-04, 3.75921175e-03, 1.65118961e-03],

[-1.02563196e-03, 1.51516964e-03, -1.03714671e-04,
1.45839393e-03, -6.99300673e-04, -1.14206067e-03,
-2.67702479e-05, -1.86604511e-06, 2.22941322e-04,

-2.71639587e-04, 3.69203145e-04, -1.51000287e-03]]. (23)

In addition, initialise {𝑥𝑥𝑡𝑡}𝑡𝑡=1𝑇𝑇 – the representation vector of the input sentence. For example,
the sentence “Moviewasgood” will be indexed as [0 1 2]. At each step of the calculation, the
unitary vector of each word will be used as 𝑥𝑥𝑡𝑡, the length of which will correspond to the number
of unique words in the dataset. In the above case, there are three of them, thus unitary vectors for
each word:
− word “Movie” has an index of 0, and its unitary vector is [1, 0, 0];
− word “was” having an index of 1, and its unitary vector is [0, 1, 0];
− word “good” has an index of 2, and its unitary vector is [0, 0, 1].
Applying formula (1) for each unitary vector 𝑥𝑥𝑡𝑡, taking the zero vector as the initial value of 𝐻𝐻𝑡𝑡−1,
obtained (24):

[[-0.00013509]
[0.00013733]
[0.00045064]
[-0.00079666]
[-0.00062898]
[0.00120057]
[-0.00044855]
[0.00047876]
[-0.00038644]
[0.00113644]
[0.00036988]
[-0.00076792]]. (24)

The vector of initial values is obtained (25) using expression (2):

[[-0.01000172]
[0.01000092]]. (25)

Using function 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥, the final predictions were calculated (26):

[[0.49499951]
[0.50500049]]. (26)

To improve the results of the neural network, the weights are recalculated using the back-
propagation method. This technique plays a crucial role in adjusting the network parameters based
on the mismatch between the predicted outputs and the actual goals. Different optimisation
algorithms can be used to improve the optimisation process. These algorithms, such as stochastic
gradient descent or its variants such as Adam or RMSprop, introduce additional methods to
improve the weight updates. They often include momentum, adaptive learning rate, or other
enhancements to speed up convergence and avoid getting stuck in local minima.

15

IDENTIFICATION AND EVALUATION OF QUALITY INDICATORS OF
DIFFERENT TYPES OF ARCHITECTURE

To determine and evaluate the qualitative indicators of different architectures, a software
implementation of RNNs for binary classification of the processed dataset is performed. The
Python programming language and the TensorFlow machine learning library are used as
development tools. The software performed a training cycle of each type of RNN for 100 epochs
(15000 steps). The qualitative indicators of each neural network (training time in seconds, accuracy)
obtained after the training process are presented in Table 3.

Table 3. Recurrent neural network training results

Name Time, s Number of steps Accuracy on test data
Recurrent neural

network 1337 15000 0.67893

Long short-term
memory 2136 15000 0.722326

Gated recurrent
units 1815 15000 0.729193

Source: compiled by the author.

Comparing the data in Table 3, it can be concluded that the fastest training time for a simple RNN
is 1337 seconds, but its accuracy is inferior to LSTM and GRU. Therewith, the accuracy rates of
LSTM and GRU are almost the same (72.2% and 72.9%, respectively), but GRU is trained faster
(1815 c, versus 2136 c for LSTM). Subsequently, the hyperparameter of the output vector
dimension was changed to better analyse the qualitative performance of different architectures.
When establishing an instance of the RNN class in the training cycle, the value of the hidden_size
variable, which contains information about the output vector of each layer, was changed. Table 4
presents the results of training a conventional RNN when the dimension of the output vector of
the recurrent layer of the network is 12, 64, 128, and 512.

Table 4. Training results with different dimensions of the output vector for RNN

Size Time, s Number of steps Accuracy on test data
12 615 15000 0.62879
64 960 15000 0.64276
128 1337 15000 0.67893
512 4679 15000 0.6398

Source: compiled by the author.

The dependence of training time and accuracy on the dimensionality of the output vector for
RNNs is presented in Figure 12.

16

Figure 12. Dependence of training time and accuracy on the dimension of the output vector
for RNN

Source: compiled by the author.

A similar analysis was conducted for other types of architecture. Thus, Table 5 presents the results
of training LSTM and GRU, respectively. The values of the dimension of the output vector of the
recurrent network layer are similar to those for the RNN case.

Table 5. Training results with different dimensions of the output vector for LSTM and
GRU

Size Time, s Number of steps Accuracy on test data
Long short-term memory

12 869 15000 0.70275
64 1136 15000 0.70541
128 2136 15000 0.722326
512 8330 15000 0.70172

Gated recurrent units
12 763 15000 0.69439
64 916 15000 0.71341
128 1815 15000 0.729193
512 6716 15000 0.70452

Source: compiled by the author.

The dependencies of training time and accuracy on the dimensionality of the output vector for
LSTM and GRU are presented in Figure 13, respectively.

Figure 13. Dependence of training time and accuracy on the dimensionality of the output
vecti=or a) for LSTM and b) GRU

60

62

64

66

68

70

0
100
200
300
400
500
600

Time, s Accuracy on test data, %

69

70

71

72

73

0

100

200

300

400

500

600

Time, s Accuracy on test data, %

17

a)

b)

Source: compiled by the author.

The experimental results demonstrated that when the output vectors of the recurrent layer were
too large, the model tended to overfit the data, which led to a drop-in accuracy. The overfitting
problem was observed when the output vector size exceeded 512. On the other hand, the best
accuracy on the test dataset was obtained for all neural network architectures when the output
vector size was set to 128, indicating that this was the optimal size for the problem at hand.
Therefore, it was concluded that a larger output vector size does not improve the performance of
the model but only increases its complexity. At the final stage, a completely different class of
networks was used for the same task – a CNN (Table 6).

Table 6. CNN and RNN training results

Name Time, s Number of steps Accuracy on test data
Convolutional neural

networks 1845 15000 0.70893

Recurrent neural networks 1337 15000 0.67893
Long short-term memory 2136 15000 0.722326

Gated recurrent units 1815 15000 0.729193

Source: compiled by the author.

A comparison of the 4 examined neural networks in terms of their training time and accuracy is
presented in Figure 14.

Figure 14. Graph comparing the 4 examined neural networks in terms of their training time
and accuracy

Source: compiled by the author.

67
68
69
70
71
72
73
74

0

100

200

300

400

500

600

Time, s Accuracy on test data, %

64
66
68
70
72
74

0
500

1000
1500
2000
2500

CNN RNN LSTM GRU

Time, s Accuracy on test data, %

18

Based on the results of training the CNN, it was found that the training period lasted slightly longer
than that of the GRU. However, the accuracy obtained by the CNN was in the range of the results
obtained by the RNN, indicating that CNNs can be used for this classification problem. Notably,
the VRV RNN architecture performed the best among all the networks considered. Thus, it can
be concluded that both CNNs and RNNs have their advantages and can be used in different
scenarios based on the specific requirements of the problem at hand.

To summarise, RNNs, especially LSTM networks, have demonstrated their success in capturing
the sequential nature of textual data. They can retain the memory of previous inputs, and their
output depends on the current input and the previous hidden state. This makes them particularly
suitable for tasks such as sentiment analysis, where the meaning of a word or phrase may depend
on the context of the surrounding text. On the other hand, in recent years, CNNs have been
successfully applied to natural language processing tasks. They are especially suitable for tasks that
require the identification of local features in the input data, such as text classification, and can learn
meaningful representations of text data by identifying important features at different levels of
abstraction. CNNs have been proven to be particularly effective for short to medium texts, such
as product reviews or tweets, and can outperform conventional word-of-mouth approaches. In
general, the choice between RNNs and CNNs for text classification depends on the specific
problem and dataset. While RNNs are better suited for capturing sequential dependencies in long
texts, CNNs can perform well with short to medium texts by extracting local features and can be
trained faster than RNNs. However, notably, there is frequently no clear winner and both
architectures should be explored and compared for a particular task.

DISCUSSION

The field of neural network research is constantly evolving, with new architectures and methods
being developed regularly. By considering a range of architectures, researchers can keep abreast of
the latest advances and contribute to the development of the field. Including other architectures in
future research is necessary to explore the full range of possibilities and determine the most
appropriate models for specific neural networking tasks (25-29). By including other architectures in
future research, it will expand understanding of their capabilities and explore their effectiveness in
different domains. In addition, including a diverse set of architectures helps to identify potential
synergies and opportunities for hybrid models that combine the strengths of several approaches.

P. Zhou et al. (30) in their research consider one of these networks and solve the problem of efficient
representation and classification of text data. They propose a new architecture that combines a
bidirectional LSTM, a type of RNN capable of extracting contextual information from past and
future sequences, with a two-dimensional maximum pooling, a technique commonly used in
computer vision tasks. The key idea behind their approach is to exploit the bidirectional nature of
LSTM to capture both sequential dependencies in text and contextual information from both areas.
By integrating the bidirectional LSTM with a two-dimensional maximal pooling, the model can
extract important features from the text representation while preserving the spatial relations
between words (31-34). The study by P. Zhou et al. (30) can complement the main study by providing
valuable information on various aspects of text classification using neural networks. A comparative
analysis of different RNN and CNN architectures allows us to understand the relative strengths
and weaknesses of these models in terms of training time and accuracy.

C. Zhou et al. (35) solve the problem of efficiently capturing local and global contextual information
from text sequences. Conventional methods, such as RNNs and CNNs, have limitations in
capturing long-term dependencies or maintaining spatial relations between words. The Z-LSTM
architecture is designed to overcome these limitations. The key idea of the Z-LSTM model is to
combine the strengths of CNN and LSTM. The research proposes a hierarchical structure where

19

convolutional layers are followed by LSTM layers. Convolutional layers act at the character level,
highlighting local features and preserving spatial relations. These features are then passed on to the
LSTM layer, which captures global dependencies and the context of the text. Conversely, study by
C. Zhou et al. (35) can benefit from the findings of the authors study by benchmarking its Z-LSTM
model against established RNN and CNN architectures, providing a more robust assessment of its
effectiveness and highlighting its unique advantages in capturing both local and global contextual
information in text sequences. Together, these studies can contribute to a richer and more nuanced
understanding of neural network approaches for text processing.

Thus, in the work of L. Huang et al. (36) propose a new approach to text classification using graph
neural networks (GNN). The authors argue that conventional approaches to text classification,
which treat text as an unordered collection of words, are unable to capture the rich semantic
relationships between words and phrases in natural language. To address this problem, they
propose a framework that creates a graphical representation of text where nodes correspond to
words or phrases and edges represent semantic relationships between them. They then apply a
GNN to represent this graph to learn a high-level representation of the text that is fed into the
classifier. The research evaluates the proposed approach on several benchmark text classification
datasets and demonstrates that it outperforms several state-of-the-art approaches. By combining
the author’s and L. Huang et al. (36) findings, researchers can potentially create hybrid models that
leverage the strengths of both RNNs/CNNs and GNNs, achieving even higher accuracy in text
classification tasks while efficiently capturing semantic information within the text data.

The research of R. Wang et al. (37) proposes a hybrid deep learning architecture for text classification
that combines the advantages of RNNs and CNNs. The authors argue that while CNNs are
effective in capturing local patterns in text, they have difficulty capturing long-term dependencies,
while RNNs are excellent at modelling sequential data but may miss important local patterns. To
overcome these limitations, the authors propose a convolutional recurrent neural network (CRNN)
architecture that combines both RNNs and CNNs. The model first applies a series of convolutional
layers to the input text, removing local features. The resulting object maps are then fed into an
RNN that captures long-term relationships between local objects. Finally, the RNN output is fed
to a fully connected layer for classification. The authors evaluate their approach on several
benchmark text classification datasets and demonstrate that it outperforms several state-of-the-art
approaches, including traditional RNNs and CNNs. The main and R. Wang et al. (37) studies provide
a more comprehensive toolkit for researchers and practitioners in the field of text classification,
offering a range of model choices and innovative hybrid solutions to tackle different text
classification challenges.

In addition, an approach using RNNs and CNNs is presented in G. Chen et al. (38). The research
considers the problem of categorising text with multiple labels when a document can belong to
several categories simultaneously. The authors propose an integrated approach that combines two
types of neural networks. Here, CNNs are used to extract features from the input text through a
series of convolution and pooling operations, and RNNs are used to model temporal dependencies
between words in the input text using long-term short-term memory units. As a result, the
proposed approach combines the strengths of both types of architecture. In particular, CNNs are
used to capture local features of the input text, while RNNs are used to capture global features and
temporal dependencies between words. The research of the authors of this article and the results
of G. Chen et al. (38), combined, offer a broader perspective on the application of RNNs and CNNs
in text analysis, allowing researchers to make an informed choice based on the specific requirements
of their text classification tasks.

20

Another interesting approach is shown in the work of J.S. Manoharan (39). The researcher proposes
using a capsule network (CapsNet) for text classification. CapsNets are a type of neural network
that uses “capsules” instead of traditional neurons, which can encode various spatial relationships
between objects. The author argues that CapsNets are better suited for text classification than
conventional neural networks as they can capture hierarchical relationships between words and
phrases. The proposed architecture consists of several layers of capsules that gradually aggregate
information from the input text. The capsules in each layer compute a “pose matrix” that encodes
the position, orientation, and scale of the input item. The pose matrices are then transformed by a
series of “routing” layers that compute a weight matrix indicating the degree to which each capsule
should be assigned to a higher-level capsule. The authors of the present study consider text
classification from a different perspective, focusing on existing neural networks, while J.S.
Manoharan (39) proposes a completely new architecture. The choice between these approaches will
depend on the specific requirements and characteristics of the text classification task.

J. Faouzi and O. Colliot (40) explored the main classic machine learning methods. According to the
results, RNNs excel at handling sequential data, as they maintain memory of previous inputs and
are adept at understanding context and relationships in a sequence. They can capture long-term
dependencies, crucial for tasks involving longer texts. However, they struggle with very long
sequences, are computationally intensive, and can be memory-intensive. On the other hand, CNNs
are efficient for parallel processing, excellent at extracting local features, and effective for shorter
texts where local context matters. Nevertheless, they may not capture the sequential nature of text
as effectively as RNNs and are limited by fixed input sizes, making them less suitable for very long
texts. In general, CNNs perform well on short texts like sentences or short paragraphs, while
RNNs, particularly LSTMs and GRUs, shine in handling longer texts for tasks like machine
translation or document summarization. Together with the author’s study, J. Faouzi and O. Colliot
(40) work offer a nuanced perspective on the versatility of neural network architectures in text
processing, enabling practitioners to make informed decisions when selecting models for various
text classification tasks.

In summary, comparing the performance of RNNs and CNNs for semantic text colouring analysis
is crucial. Currently, RNNs outperform traditional machine learning algorithms, achieving high
accuracy and F1 scores, while CNNs are continually improving for text classification. However, it's
important to acknowledge that neither RNNs nor CNNs are flawless, and there are limitations to
their performance. Additionally, given the ever-evolving nature of natural language processing,
exploring alternative models like GNN, CRNN, or CapsNet is equally important.

CONCLUSIONS

In this research, a comparative analysis of RNN architectures and CNNs was performed using the
example of the binary text classification task. Comparing the data presented in Section 3, it can be
concluded that a simple RNB is the fastest to train (1337 seconds), but its accuracy is inferior to
LSTM and GRU. Therewith, the accuracy rates of LSTM and GRU are almost the same (LSTM –
72.2%, GRU – 72.9%), but GRU is trained faster (GRU – 1815 seconds, LSTM – 2136 seconds).
The training period for CNN took a little longer than for GRU, and the accuracy is within the
range of the results of a conventional RNN, thus, it can be concluded that CNN can be used for
this classification problem. However, RNNs proved to be the best. The obtained results provide
valuable information about the effectiveness of RNNs and CNNs for classifying semantic
colouring in text. By analysing various metrics, the performance of each model architecture was
evaluated. In addition, metrics such as training time and accuracy were considered to provide a
comprehensive evaluation of the models. The results of the study add to the existing knowledge in
the field of text classification. They demonstrate a practical implementation of RNNs and CNNs

21

for sentiment analysis and provide valuable insights into the performance of these models in terms
of their ability to accurately classify movie viewing sentiment.

In summary, analysis highlights the importance of carefully selecting parameters to match a
dataset’s underlying patterns. In sentiment analysis task, RNNs outperformed other classifiers, such
as CNNs, due to RNNs’ aptitude for sequential data processing, a key feature of textual data.
Hence, for similar tasks, we recommend considering RNN-based architectures. However, it’s
important to note that this conclusion is dataset-specific, and different datasets or architectures
may yield different results.

The practical significance of this study lies in its demonstration of the operational process of RNNs
using Python and TensorFlow, with a specific application in sentiment analysis of film reviews. By
leveraging the power of Python’s simplicity and TensorFlow’s flexibility, the study showcases the
entire pipeline of developing a neural network model, including data pre-processing, model
architecture design, training, evaluation, and deployment. Future research should focus on testing
various models and architectures to enhance the accuracy and efficiency of text classification
systems in this evolving field.

ACKNOWLEDGEMENTS

The study was created within the framework of the project financed by the National Research Fund
of Ukraine, registered No. 30/0103 from 01.05.2023 “Methods and means of researching markers
of ageing and their influence on post-ageing effects for prolonging the working period”, which is
carried out at the Department of Artificial Intelligence Systems of the Institute of Computer
Sciences and Information of technologies of the Lviv Polytechnic National University.

REFERENCES

1. Martins RM, Gresse Von Wangenheim C. Findings on teaching machine learning in high
school: A ten-year systematic literature review. Informatics in Education. 2022.
https://doi.org/10.15388/infedu.2023.18

2. Hopkins E. Machine learning tools, algorithms, and techniques. J Self-Gov Manage Econ.
2022. 1: 43-55.

3. Murphy KP. Probabilistic machine learning: An introduction. Cambridge: MIT Press; 2022.
4. Zhou ZH. Open-environment machine learning. National Science Review, 2022. 9(8):

nwac123.
5. Zhu J, Jiang Q, Shen Y, Qian C, Xu F, Zhu Q. Application of recurrent neural network to

mechanical fault diagnosis: A review. J Mech Sci Technol. 2022. 36: 527-542.
6. Ghimire D, Kil D, Kim SH. A survey on efficient convolutional neural networks and

hardware acceleration. Electronics, 2022. 11(6): 945.
7. Lukashchuk H, Onufriv Ia, Tupis S. Green space and planning structure optimisation ways

in parks and monuments of landscape architecture. Archit Stud. 2023. 9(1): 23-35.
8. Hasanli R, Aliyev I, Poladov N, Azimova L, Tagiyev T. Isothermal transformations in high-

strength cast iron. Sci Herald of Uzhhorod Univ Series "Physics" 2022. (51): 48-58.
9. Nazari M, Alidadi M. Measuring credit risk of bank customers using artificial neural network.

J Manage Res. 2013. 5(2): 17-27.
10. Pluzhnyk O, Drok P. Electronic document management in the system of modern libraries:

efficiency, security and innovation. Soc Doc Commun. 2023. 19: 198-212.
11. Wüthrich MV. Bias regularization in neural network models for general insurance pricing.

Eur Actuar J. 2020. 10: 179-202.
12. Sedliačik J, Pinchevska О, Lopatko K, Lopatko L. Effect of magnesium nanoparticles on

formaldehyde emissions from wood composite materials. Ukr J For Wood Sci. 2023. 14(3):

https://doi.org/10.15388/infedu.2023.18

22

78-90.
13. Aviv I, Barger A, Pyatigorsky S. Novel Machine Learning Approach for Automatic

Employees' Soft Skills Assessment: Group Collaboration Analysis Case Study. 5th
International Conference on Intelligent Computing in Data Sciences, ICDS 2021. Virtual,
Online: Institute of Electrical and Electronics Engineers. 2021.
https://doi.org/10.1109/ICDS53782.2021.9626760

14. Kulgildinova TA, Uaissova GI. Realization of frame-based technologies in the context of
education informatization. J Theor Appl Inf Technol. 2016. 89(1): 236-242.

15. Tabriz N, Nurtazina ZB, Kozhamuratov MT, Skak K, Mutaikhan Z. Effects of secondary
infections on the multidrug-resistant Tuberculosis: A cohort study. Med J Islamic Repub Iran
2021. 35(1):1-7.

16. Shynkariuk IuM. Alternative representation of space and time: Geometric solution of
problems of relativity theory. Sci Herald of Uzhhorod Univ Series "Physics" 2022. (51): 74-
82.

17. Panov V. The scientific process of two interferometers (optical) development and the
mitigation of external influence. Sci Herald of Uzhhorod Univ Series "Physics" 2023. (53):
19-30.

18. Kirimbayeva Z, Abutalip A, Mussayeva A, Kuzembekova G, Yegorova N. Epizootological
monitoring of some bacterial infectious diseases of animals on the territory of the Republic
of Kazakhstan. Comp Immunol Microbiol Infect Dis. 2023. 102: 102061.

19. Oliynyk O, Barg W, Oliynyk Y, Dubrov S, Gurianov V, Rorat M. Lack of Difference in
Tocilizumab Efficacy in the Treatment of Severe COVID-19 Caused by Different SARS-
CoV-2 Variants. J Pers Med. 2022. 12(7): 1103.

20. Ho NH, Yang, HJ, Kim SH, Lee G. Multimodal approach of speech emotion recognition
using multi-level multi-head fusion attention-based recurrent neural network. IEEE Access.
2020. 8: 61672-6168.

21. Chamishka S, Madhavi I, Nawaratne R, Alahakoon D, De Silva D, Chilamkurti N,
Nanayakkara V. A voice-based real-time emotion detection technique using recurrent neural
network empowered feature modelling. Multimedia Tools Appl. 2022. 81: 35173-35194.

22. Barzegar V, Laflamme S, Hu C, Dodson J. Ensemble of recurrent neural networks with long
short-term memory cells for high-rate structural health monitoring. Mech Syst Signal
Process. 2022. 164: 108201.

23. Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. Proceedings of
the AAAI Conf Artif Intell, 2019. 33(1): 7370-7377.

24. Yig W, Kann K, Yu M, Schütze H. Comparative study of CNN and RNN for natural
language processing. 2017. https://doi.org/10.48550/arXiv.1702.01923

25. Tanchak A, Katovsky K, Haysak I, Adam J, Holomb R. Research of spallation reaction on
plutonium target irradiated by protons with energy of 660 MeV. Sci Herald of Uzhhorod
Univ Series "Physics" 2022. (52): 36-45.

26. Petryshyn H, Kryvorychko O, Lukashchuk H, Danylko N, Klishch O. Changing the
qualities of urban space by means of landscape architecture. Archit Stud. 2022. 8(1): 22-33.

27. Danilenko I, Gorban O, da Costa Zaragoza de Oliveira Pedro PM, Viegas J, Shapovalova O,
Akhkozov L, Konstantinova T, Lyubchyk S. Photocatalytic Composite Nanomaterial and
Engineering Solution for Inactivation of Airborne Bacteria. Top Catal. 2021. 64(13-16): 772-
779.

28. Suleymanov TA, Shukurova AS. Antioxidant activity of metanolic extracts from the leaves
of Rubus idaeus L., Juglans regia L. and aerial part of Viscum album L. From the flora of
Azerbaijan. Azerb. Pharm. Pharmacother J. 2022. 22(1).
https://www.azpharmjournal.org/en/jurnal/azerbaycan-florasinda-rubus-idaeus

29. Shaprynskyi V, Nazarchuk O, Faustova M, Mitiuk B, Dmytriiev D, Dobrovanov O,
Kralinsky K, Babina Y. Some aspects of infectious complications in patients with surgical

https://doi.org/10.1109/ICDS53782.2021.9626760
https://doi.org/10.48550/arXiv.1702.01923
https://www.azpharmjournal.org/en/jurnal/azerbaycan-florasinda-rubus-idaeus

23

diseases mult icentr trials. Lek Obz. 2020. 69(7-8): 257-260.
30. Zhou P, Qi Z, Zheng S, Xu J, Bao H, Xu B. Text classification improved by integrating

bidirectional LSTM with two-dimensional max pooling. 2016.
https://doi.org/10.48550/arXiv.1611.06639

31. Rakhimov G, Shevnikov M, Plahtiy D, Nedilska U, Krachan T. Life forms of plants of
natural and anthropogenic landscapes. Sci Horiz. 2023. 26(1): 62-72.

32. Jaskiewicz F, Kowalewski D, Kaniecka E, Kozlowski R, Marczak M, Timler D. Factors
Influencing Self-Confidence and Willingness to Perform Cardiopulmonary Resuscitation
among Working Adults-A Quasi-Experimental Study in a Training Environment. Inter J
Envir Res Publ Heal. 2022. 19(14): 8334.

33. Parisi GF, Brindisi G, Indolfi C, Diaferio L, Marchese G, Ghiglioni DG, Zicari AM, Miraglia
del Giudice M. Upper airway involvement in pediatric COVID-19. Pediatr. Allergy Immun.
2020. 31(S26): 85-88.

34. Jalilova I, Mansurova LN, Zulfugarova NS. Development of a competitive map of
antibiotics for the pharmaceutical market of Azerbaijan. Azerb Pharm Pharmacother J.
2022. 22(2): 75-81.

35. Zhou C, Sun C, Liu Z, Lau F. A C-LSTM neural network for text classification. 2015.
https://doi.org/10.48550/arXiv.1511.08630

36. Huang L, Ma D, Li S, Zhang X, Wang H. Text level graph neural network for text
classification. 2019. https://doi.org/10.48550/arXiv.1910.02356

37. Wang R, Li Z, Cao J, Chen T, Wang L. Convolutional recurrent neural networks for text
classification. In: 2019 International Joint Conference on Neural Networks (IJCNN).
Budapest: IEEE; 2019. p. 1-6.

38. Chen G, Ye D, Xing Z, Chen J, Cambria E. Ensemble application of convolutional and
recurrent neural networks for multi-label text categorization. In: 2017 International joint
conference on neural networks (IJCNN). Anchorage: IEEE; 2017. p. 2377-2383.

39. Manoharan JS. 2021. Capsule network algorithm for performance optimization of text
classification. J Soft Comput Paradigm. 2021. 3(1): 1-9.

40. Faouzi J, Colliot O. Classic Machine Learning Methods. In: O. Colliot (Eds), Machine
Learning for Brain Disorders. Neuromethods, vol 197. New York: Humana; 2023. p. 25-75.
https://doi.org/10.1007/978-1-0716-3195-9_2

https://doi.org/10.48550/arXiv.1611.06639
https://doi.org/10.48550/arXiv.1511.08630
https://doi.org/10.48550/arXiv.1910.02356
https://doi.org/10.1007/978-1-0716-3195-9_2

