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ABSTRACT 

Introduction: The purpose of the research is to compare different types of recurrent neural 
network architectures, namely the long short-term memory and gate recurrent node architecture 
and the convolutional neural network, and to explore their performance on the example of binary 
text classification. Material and Methods: To achieve this, the research evaluates the performance 
of these two popular deep-learning approaches on a dataset consisting of film reviews that are 
marked with both positive and adverse opinions. The real-world dataset was used to train neural 
network models using software implementations. Results and Discussion: The research focuses 
on the implementation of a recurrent neural network for the binary classification of a dataset and 
explores different types of architecture, approaches and hyperparameters to determine the best 
model to achieve optimal performance. The software implementation allowed evaluating of various 
quality metrics, which allowed comparing the performance of the proposed approaches. In 
addition, the research explores various hyperparameters such as learning rate, packet sizes, and 
regulation methods to determine their impact on model performance. Conclusion: In summary, 
the study found that recurrent neural networks, particularly the gated recurrent unit (GRU), 
demonstrated superior performance in binary text classification compared to convolutional neural 
networks, underscoring the significance of selecting appropriate model architectures and parameter 
adjustments for specific datasets. 
 
Keywords: Binary text classification, Long short-term memory, Convolutional neural network, 
Gate recurrent node. 

INTRODUCTION 

Machine learning, in practice, encompasses a variety of techniques that enable machines to learn 
from data autonomously, without being explicitly programmed for specific tasks (1,2). This process 
involves the machine analysing large datasets to discern patterns, trends, and relationships. The key 
aspect of machine learning is its ability to adapt and refine its algorithms based on new data, thus 
constantly evolving and becoming more accurate in its predictions or decisions. This self-learning 
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capability distinguishes machine learning from traditional programming, where tasks are performed 
based on predefined rules and algorithms (3,4). In turn, these methods rely on algorithms to learn 
from a prepared data set and improve their performance over time. Currently, recurrent neural 
network (RNN) (5) and convolutional neural network (CNN) (6) are two popular deep learning 
architectures that are commonly used for binary text classification tasks (7). In addition, using 
machine learning to recognise handwriting has revolutionised the field of document digitisation, 
enabling the fast and efficient conversion of handwritten text into digital formats. This technology 
has transformed industries that rely heavily on document processing, such as banking, insurance, 
and healthcare (8-12). 
 
The field of machine learning has enormous potential to solve complex problems in various 
industries, and using deep neural networks, especially RNNs, is a promising area. Due to their 
ability to analyse sequential data and learn complex patterns, machine learning technologies have 
transformed areas such as speech recognition, natural language processing and handwriting 
recognition (13-16), enabling businesses to achieve greater efficiency and productivity. One of the 
most important developments in the field of machine learning is the emergence of deep neural 
networks, especially RNNs. RNN are a powerful type of neural network that can be used for a 
wide range of tasks, such as speech recognition, natural language processing, and even handwriting 
recognition. They work by taking in sequential data and using feedback loops to store information 
about previous inputs, allowing them to learn complex patterns over time (17-19). 
 
The model proposed by N.H. Ho et al. (20) uses a RNNs to solve tasks in the field of speech 
recognition, which ensures efficient and accurate speech transcription. Similarly, S. Chamishka 
et al. (21) present a technique for detecting emotions in real-time using RNNs and feature modelling. 
The proposed approach offers an effective solution for accurately detecting emotions from voice 
recordings, which provides many opportunities for automated translation, sentiment analysis, and 
text generation. One of the common RNN architectures used for binary text classification is the 
long short-term memory (LSTM) network. LSTMs are a variant of RNNs that use closed cells to 
selectively remember or forget information, allowing them to better capture long-term 
dependencies in data. LSTMs have demonstrated impressive results in tasks such as sentiment 
analysis and text classification. The work of V. Barzegar et al. (22) presents using conventional RNNs 
together with LSTM cells for high-speed structural health monitoring. Another example of a neural 
network architecture is CNNs. These neural networks are designed to process gridded data types, 
such as images. However, they can be adapted for text classification tasks by treating each word as 
a one-dimensional input grid. CNNs work by convolving a filter or kernel on the input and 
extracting local features. It allows them to capture important patterns in the input, such as n-grams 
of words that often occur together in certain classes of text. The work of L. Yao et.al. (23) presents 
a new approach to text classification using convolutional graph networks. By introducing the graph 
structure into the learning process, the proposed model captures the inherent connections between 
words and ensures competitiveness in text classification tasks. 
 
Recent studies have demonstrated that both CNN and RNN can be effective models for the 
problem of binary classification of semantic text colouring. A detailed analysis of these networks 
can be useful for researchers and practitioners working on natural language processing tasks and 
trying to choose the right model for their needs. A similar analysis was performed in the work of 
W. Yig et al. (24), where they provide an overview of both CNN and RNN, including their 
architectures and how they can be used for natural language processing. RNNs excel at handling 
sequential data, such as text or time series, due to their memory that captures data order and 
context. They are used in tasks like language modelling, text generation, and speech recognition 
but face challenges with vanishing gradients. In contrast, CNNs specialize in processing grid-like 
data, primarily images, for tasks like image classification and object detection. They excel at pattern 
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recognition by applying filters and capturing spatial hierarchies. RNNs have internal memory, while 
CNNs focus on spatial learning. These networks are fundamental in deep learning, with RNNs in 
natural language processing and CNNs in computer vision tasks. 
 
The aim of this study is to evaluate and compare the performance of different neural network 
architectures for the task of classifying semantic coloring in texts, with the ultimate goal of 
identifying the optimal architecture for this specific task. This study is important because it 
compares various neural network architectures for binary text classification using a real-world 
dataset. It evaluates their performance, explores hyperparameters, and provides practical 
recommendations. This research contributes to the field by offering insights into architecture 
selection and hyperparameter tuning, making it valuable and novel. 

MATERIALS AND METHODS 

ANALYSING THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 

It is known that RNNs have a chain-like architecture consisting of repeating cells. They can be 
either a single neuron or a sequence of several neurons. For example, a basic RNN cell contains a 
single layer with an activation function𝑡𝑡𝑡𝑡ℎ𝑛𝑛, which is quite simple in terms of structure. Suppose 
there is a sequence of input data {𝑥𝑥𝑡𝑡}𝑡𝑡=1𝑇𝑇 . In the context of text analysis, 𝑥𝑥𝑡𝑡 = 𝑥𝑥12, … , 𝑥𝑥𝑛𝑛2 can 
represent the vector form of the 𝑡𝑡-th word in the sequence. For a sequence of elements, 𝑇𝑇of a 
RNN are required. Significantly, the output of the 𝑡𝑡-th cell is fed as input to the 𝑡𝑡 + 1-th cell, 
establishing a chain-like structure that facilitates processing of the entire input sequence (Figure 1). 

Figure 1. Scheme of RNN cells 

 

Source: compiled by the author. 

The word vectors are processed by the cells using the ratio specified in formula (1): 

𝐻𝐻𝑡𝑡 = tanh(𝑈𝑈𝑡𝑡 ∙ 𝑥𝑥𝑡𝑡 + 𝑊𝑊 ∙ 𝐻𝐻𝑡𝑡−1 + 𝑏𝑏). (1) 

Notably, the activation function used in RNMs should not be limited to 𝑡𝑡𝑡𝑡ℎ𝑛𝑛. Other common 
options include sigmoid, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥or other variants. In addition, the weights 𝑈𝑈𝑡𝑡 associated 
with each element of the sequence 𝑡𝑡 are unique, while the weights ∀𝑡𝑡 remain constant for all 
elements. During the training of the neural network, the weights are adjusted using the back-
propagation algorithm. After the RNN layer, the next output layer can produce a sequence of 
outputs, denoted as {𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑇𝑇 , with the activation function 𝑠𝑠 applied to each. Thus, the output 
forecasts are determined by formula (2): 

𝑦𝑦�𝑡𝑡 = V ∗ 𝑠𝑠(𝐻𝐻𝑡𝑡). (2) 

The loss function Е can be defined as (3): 

𝐸𝐸𝑡𝑡(𝑦𝑦𝑡𝑡,𝑦𝑦�𝑡𝑡) = −𝑦𝑦𝑡𝑡𝑙𝑙𝑠𝑠𝑙𝑙𝑦𝑦�𝑡𝑡, (3) 
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hence (4): 

𝐸𝐸(𝑦𝑦𝑡𝑡,𝑦𝑦�𝑡𝑡) = ∑ 𝐸𝐸𝑡𝑡(𝑦𝑦𝑡𝑡,𝑦𝑦�𝑡𝑡)𝑇𝑇
𝑡𝑡=1 = −∑ 𝑦𝑦𝑡𝑡𝑙𝑙𝑠𝑠𝑙𝑙𝑦𝑦�𝑡𝑡𝑇𝑇

𝑡𝑡=1 . (4) 

To start using gradient descent to update the weights of a neural network, it is very crucial to 
calculate the gradients of the loss function with respect to 𝑈𝑈, 𝑊𝑊, and 𝑉𝑉. In particular, when working 
with 𝑉𝑉, the error gradient at step 𝑡𝑡 depends solely on 𝑦𝑦𝑡𝑡, 𝑦𝑦�𝑡𝑡, and 𝐻𝐻𝑡𝑡 (5, 6): 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

𝑇𝑇

𝑡𝑡=1
, (5) 
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𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝐻𝐻𝑡𝑡

𝜕𝜕𝐻𝐻𝑡𝑡
𝜕𝜕𝜕𝜕

. (6) 

However, for 𝑊𝑊 and 𝑈𝑈, when estimating the error gradient, 𝐻𝐻𝑘𝑘,𝑘𝑘 < 𝑡𝑡 (7) should be considered: 

𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦�𝑡𝑡

𝜕𝜕𝑦𝑦�𝑡𝑡
𝜕𝜕𝜕𝜕
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. (7) 

The derivatives of tahn and sigmoid are limited to one, and their values approach zero as the 
absolute value of the input data increases. It leads to gradients close to zero, and as the distance 
between the 𝑡𝑡th and 𝑘𝑘th objects increases, the influence of the 𝑘𝑘th object on the weight update 
decreases. On the other hand, using other activation functions can result in gradients with absolute 
values greater than one, causing them to grow infinitely. As a result, distant objects may have a 
greater impact when weights are updated. This problem is known as the gradient 
damping/explosion problem, and it is not limited to RNN but is present in deep neural networks. 

LONG SHORT-TERM MEMORY 

Long Short-Term Memory Networks, known as LSTMs, are a unique type of neural network that 
is capable of identifying both short-term and long-term relationships. Similar to RNN, LSTMs 
have a circuit-like structure; however, their recurrent cellular structure is more complex. It consists 
of four neurons connected in a certain way. In Figure 2, the neurons are marked with yellow blocks, 
while the pink circles represent the coordinate linear operations. 

Figure 2. Structure of LSTM cells 

 

Source: compiled by the author. 

Consider the structure of the LSTM cell in more detail. Its cell consists of two recurrent 
components – the output vector 𝐻𝐻𝑡𝑡 and the state vector 𝐶𝐶𝑡𝑡. Unlike other RNNs, the LSTM cell 
does not use an activation function in component 𝐶𝐶𝑡𝑡. The state vector 𝐶𝐶𝑡𝑡 is transmitted directly 
through the entire circuit and is involved in only a few linear transformations. As a result, the 
resulting value has no blurring in time and the gradient is not lost during the network training 
process (Figure 3). 
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Figure 3. LSTM structure cell 

 

Source: compiled by the author. 

The LSTM cell has the ability to discard information from its repetitive components, which is 
controlled by special structures known as filters. The first step in the LSTM process involves 
determining what information can be removed from the state vector. This decision is made by a 
neuron with a sigmoidal activation function called the “forgetting filter layer” (Figure 4). 

Figure 4. Schematic representation of the filtering stage of the LSTM cell 

 

Source: compiled by the author. 

This structure takes a vector (𝐻𝐻𝑡𝑡−1, 𝑥𝑥𝑡𝑡) as an input parameter and returns another vector 𝑠𝑠𝑡𝑡 ∈
 [0, 1]𝑚𝑚, where 𝑠𝑠 is the dimension of vector 𝐶𝐶𝑡𝑡. Each component of 𝐶𝐶𝑡𝑡−1 corresponds to its own 
component of the vector 𝑠𝑠𝑡𝑡 , which can take values from 0 to 1, where 1 corresponds to a full save 
command, and 0 to a full exclusion command. The appropriate filter is determined from equation 
(8): 

 𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑓𝑓) (8) 

The next step in LSTM involves determining what new information should be stored in the state 
vector. This process consists of two separate parts. First, the input filter layer is used to identify 
the components of the state vector that need to be updated in the update estimate. This level uses 
a sigmoidal activation function (Figure 5). 

Figure 5. Schematic representation of the information processing stage of an LSTM cell 

 

Source: compiled by the author. 
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After that, layer 𝑡𝑡𝑡𝑡𝑛𝑛ℎ establishes a vector of new values to replace the components of the state 
vector that need to be updated. The input to both layers is a vector (𝐻𝐻𝑡𝑡−1, 𝑥𝑥𝑡𝑡), while the output is 
a vector with dimension 𝑠𝑠. Mathematically, these processes can be described as follows (9, 10): 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖), (9) 

 �̃�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊𝐶𝐶 ⋅  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝐶𝐶), (10) 

The updated state vector 𝐶𝐶𝑡𝑡 is obtained from equation (11) (Figure 6): 

 𝐶𝐶𝑡𝑡 = 𝑠𝑠𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡. (11) 

 

Figure 6. Schematic representation of the stage of updating the state vector 

 

Source: compiled by the author. 

The last step is to update the input vector using the following filters (12, 13): 

 𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑜𝑜), (12) 

 ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡∗ 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝐶𝐶𝑡𝑡). (13) 

First, using the relation (12), the information from the state vector is calculated to be transferred 
to the output vector. Then, using (13), the result is processed by layer 𝑡𝑡𝑡𝑡𝑛𝑛ℎ. The output values are 
in the range [-1, 1] and are multiplied with the output values of the sigmoidal layer co-ordinately, 
eliminating unnecessary information. This process is presented graphically in Figure 7. 

Figure 7. Schematic representation of the input vector update stage 

 

Source: compiled by the author. 

Notably, in one embodiment of LSTM, connections within the cell are additionally used, as 
demonstrated in Figure 8. 
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Figure 8. Schematic representation of an LSTM cell by adding so-called “peephole 
connections” 

 

Source: compiled by the author. 

Mathematically, they are described by the following relations (14-16): 
 
 𝑠𝑠𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�, (14) 
 
 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖), (15) 
 
 𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜). (16) 
 
As a result, the filter layers have access to the state vector using vector [𝐶𝐶𝑡𝑡−1,ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] instead of 
[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] as input. 

VALVE RECURRENT ASSEMBLY 

Another interpretation of LSTMs is gated recurrent units (GRU), which replace the state vector 
with an output vector that passes directly through the circuit without applying any activation 
functions (Figure 9). In addition, instead of separate forgetting and input filters, this modification 
combines them into a single update filter 𝑧𝑧𝑡𝑡. 

Figure 9. Schematic representation of the GRU-based architecture 

 

Source: compiled by the author. 

In the GRU-based system, a cell contains a set of three neurons. Assuming that the input to the 
sigmoid layer is vector [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡], the output is the updated vector 𝑧𝑧𝑡𝑡, whose dimension is the same 
as the initial vector ℎ𝑡𝑡−1 (17): 

 𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]). (17) 

Then, using another sigmoidal layer, the reset vector 𝑟𝑟𝑡𝑡 (18) is constructed in a similar way: 
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 𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]). (18) 

It is necessary to determine the components of vector ℎ𝑡𝑡−1 and their concentration required to 
establish an update of the original vector. The last neuron, in turn, contains the activation function 
𝑡𝑡𝑡𝑡𝑛𝑛ℎ (19): 

 ℎ�𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊 ⋅ [𝑟𝑟𝑡𝑡∗ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]). (19) 

The new value of the state vector can be obtained from equation (20): 

 ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡∗ℎ�𝑡𝑡 . (20) 

As a result, a fairly simpler model can be obtained compared to the usual Global Consumer 
Community Platform (GCCP). 

CONVOLUTIONAL NEURAL NETWORK 

CNNs are known to have made significant progress in image classification and are a fundamental 
component of various computer vision systems, such as self-driving cars and automatic tagging of 
Facebook photos. However, they are now used in natural language processing applications. 
Typically, a CNN consists of convolutional, pooling (sub-sampling), and fully connected output 
layers in any order. A network can contain a combination of all three types of layers. In the 
convolutional layer, neurons that use the same weights are combined into feature maps, and each 
neuron in the feature map is connected to a part of the neurons in the previous layer. When the 
network is calculated, it appears that each neuron performs a convolution of some area of the 
previous layer (which is determined by the set of neurons associated with this neuron). Unlike a 
fully connected convolutional layer, in which a neuron is connected to only a limited number of 
neurons in the previous layer, a convolutional layer is similar to a convolutional operation, where 
only a small weight matrix (convolution kernel) is used and migrates throughout the processed 
layer. Another feature of the convolutional layer is that it slightly reduces the image due to edge 
effects. Image pixels, which are conventionally used as CNN inputs, can be replaced by sentences 
or documents represented in a matrix. In this case, each row of the matrix will correspond to one 
word or character. A diagram of this architecture is presented in Figure 10. 

Figure 10. An example of CNN visualization for natural language processing 

 

Source: compiled by the author. 
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As a rule, the input data is a vector representation of a word, using the Word to Vector (word2vec) 
or Global Vectors for Word Representation (GloVe) methods. Word2Vec, based on neural 
networks, learns word representations by predicting context words from target words or vice versa, 
resulting in dense vectors where similar words are closer in the vector space. GloVe, on the other 
hand, leverages global word co-occurrence statistics to generate word embeddings by factorizing a 
co-occurrence matrix, leading to vectors that capture semantic relationships between words. 
 
For example, for a 10-word sentence, using 100-dimensional embedding, the output is a 10×100 
matrix. The above-mentioned architectures, including RNNs, CNNs and other models, have been 
implemented using software tools and frameworks. During the implementation process, various 
parameters such as speed and accuracy were carefully measured and evaluated to determine the 
performance of these architectures when applied to practical scenarios. By making careful 
comparisons of these architectures in terms of speed and accuracy, valuable insights were gained 
into their performance characteristics and suitability for different applications. This empirical 
analysis helped to select the most appropriate model for a particular problem domain, considering 
factors such as computational efficiency and prediction accuracy. 

RESULTS 

DEMONSTRATION OF RNN OPERATION 

The Python programming language and the TensorFlow machine learning library were used as 
development tools. Python is an interpreted high-level programming language that has become one 
of the most popular programming languages for machine learning due to its simplicity, readability, 
and large number of available libraries. Its syntax is intuitive and easy to learn, making it accessible 
to developers of all skill levels. In addition, Python is an open-source language, which means that 
anyone can contribute to its development and improvement. TensorFlow – is an open-source 
software library developed by Google for machine learning applications such as neural networks. 
It provides an easy-to-use interface for creating, training, and deploying machine learning models. 
TensorFlow allows establishing of complex models with many layers, making it a popular choice 
for deep learning applications. It can run on a variety of devices, including CPUs, GPUs, and even 
mobile devices. In addition, TensorFlow supports distributed computing, which allows training 
and scaling large models across multiple machines. The library is based on C++ but has interfaces 
for Python, C++, Java. In general, TensorFlow – is a powerful and flexible tool for creating 
machine learning models in Python. 
 
The development of a neural network involved several key steps, including data pre-processing, 
model design and architecture, training, evaluation, and deployment. The process of developing a 
neural network using Python and TensorFlow begins with data preparation. The dataset is cleaned 
and pre-processed. The data is then divided into training, validation, and testing sets for evaluation 
purposes. During the forward propagation phase, the input data is fed into the network and 
computations are performed layer by layer. Each layer applies its activation function to establish 
an output that serves as an input to the next layer. To evaluate the performance of the network, a 
loss function is calculated to measure the discrepancy between the predicted outputs and the actual 
targets. Based on the evaluation results, the model can be tuned by making adjustments to the 
architecture, and hyperparameters, or using regularisation techniques to prevent overfitting. 
Commonly used loss functions include mean square error or cross-entropy loss. Backpropagation 
is then used to compute gradients of the loss function for the network parameters. These gradients 
are used to update the weights and offsets to minimise losses and improve model performance. 
Once the training process is complete, the model is evaluated using a validation or testing suite. 
Performance metrics such as precision, accuracy, recall, and F1 score are calculated to evaluate the 
model’s performance. Throughout the entire development process, Python and TensorFlow 
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provide a powerful framework for establishing and training neural networks. They offer a wide 
range of tools, libraries, and application programming interfaces (APIs) that simplify 
implementation and ensure efficient computation. 
The dataset used in this machine learning task is derived from film review data obtained from 
RottenTomatoes, a popular online film review platform. This dataset contains 10662 reviews with 
an even distribution of positive and negative opinions. Specifically, half of the opinions are positive 
and the other half are negative. To classify the opinions as positive or negative, the snippets of 
opinions from the RottenTomatoes webpages that were labelled “fresh” were considered positive, 
while those labelled “rotten” were considered negative. Using this dataset, machine learning models 
can be trained to accurately classify the sentiment of film opinions (Figure 11). 

Figure 11. Excerpts of opinions from the Rotten Tomatoes website 

 

 

Note: The first opinion contains a positive review (marked “fresh”), the second – a negative one 
(marked “rotten”). 

Source: compiled by the author. 

The data are split into 2 files – rt-polarity.pos contains 5331 positive excerpts, rt-polarity.neg 
contains 5331 negative excerpts (Table 1). 

Table 1. Dataset fragments 
rt-polarity.pos rt-polarity.neg 

therockisdestinedtobethe 21st century’snew 
“conan” andthathe’sgoingtomake a 
splashevengreaterthanarnoldschwarzenegge
r, jean-claudvandammeorstevensegal. 
thegorgeouslyelaboratecontinuationof 
“thelordoftherings” trilogyissohugethat a 
columnofwordscannotadequatelydescribec
o-
writer/directorpeterjackson’sexpandedvisio
nof j. r. r. tolkien’smiddle-earth. 
effectivebuttoo-
tepidbiopicifyousometimesliketogotothemo
viestohavefun, wasabiis a goodplacetostart. 
emergesassomethingrare, 
anissuemoviethat’ssohonestandkeenlyobser
vedthatitdoesn’tfeellikeone. 
thefilmprovidessomegreatinsightintotheneu
roticmindsetofallcomics -- 
eventhosewhohavereachedtheabsolutetopo
fthegame. 
offersthatrarecombinationofentertainmenta
ndeducation. 

simplistic, sillyandtedious. 
it’ssoladdishandjuvenile, 
onlyteenageboyscouldpossiblyfinditfunny. 
exploitativeandlargelydevoidofthedepthorsophisticati
onthatwouldmakewatchingsuch a 
graphictreatmentofthecrimesbearable. 
[garbus] discardsthepotentialforpathologicalstudy, 
exhuminginstead, 
theskewedmelodramaofthecircumstantialsituation. 
a 
visuallyflashybutnarrativelyopaqueandemotionallyvap
idexerciseinstyleandmystification. 
thestoryisalsoasunoriginalastheycome, 
alreadyhavingbeenrecycledmoretimesthani’dcaretoco
unt. 
abouttheonlythingtogivethemoviepointsforisbravado 
-- 
totakeanentirelystaleconceptandpushitthroughtheaud
ience’smeatgrinderonemoretime. 

Source: compiled by the author. 
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The dataset contains approximately 20000 unique words, which is quite challenging to process and 
analyse. In addition, the dataset did not have a predefined split between training and test data. Thus, 
to make sure that the model is high-performing and generalizable, 10% of the data was randomly 
selected for testing, while the remaining 90% was used for training. The main purpose of the neural 
network is to classify each opinion as positive or negative, which is a binary classification problem. 
It allows determining the sentiment of the text and understanding how viewers perceive films. This 
task is crucial in the film industry, as it allows filmmakers to assess the audience’s reaction to their 
work and make informed decisions accordingly. Data pre-processing steps: 
 
1. Loading positive and negative sentences from raw data files. 
2. Data cleaning. Remove special characters and double quotes. Regular expressions are used to 
do this, and the pattern search method in the feed replaces all unnecessary characters with an empty 
string. In addition, the feed must be reduced to lowercase letters. To do this, use the methods of 
converting characters to a specific case. 
3. Limiting the length of each sentence to the maximum possible length of 59 words. Adding 
special tokens <PAD> to shorter sentences, as they need to be of the same length for efficient 
data processing. 
Indexing each word with a specific integer from 0 to 18765. Each sentence is converted into a 
vector of integers (Table 2). 

Table 2. Data processed 

Cleaned data Data after indexing 
therockisdestinedtobethe 21st century’s 
newconanandthathe ‘s goingtomake a 
splashevengreaterthanarnoldschwarzenegger, 
jeanclaudvandammeorstevensegal 

[1 2 3 4 5 6 1 7 8 9 10 11 12 13 14 9 15 5 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 30 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0] 

thegorgeouslyelaboratecontinuationofthelordoftherings
trilogyissohugethat a 
columnofwordscannotadequatelydescribecowriterdirect
orpeterjackson ‘s expandedvisionof j r rtolkien ‘s 
middleearth 

[1 31 32 33 34 1 35 34 1 36 37 3 38 39 
13 17 40 34 41 42 43 44 45 46 47 48 49 
9 50 51 34 52 53 53 54 9 55 56 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0] 

effectivebuttootepidbiopic effectivebuttootepidbiopic 
[57 58 59 60 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0] 

ifyousometimesliketogotothemoviestohavefu, wasabiis 
a goodplacetostart 

[62 63 64 65 5 66 5 1 67 5 68 69 70 3 17 71 72 5 73 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0] 

emergesassomethingrare, anissuemoviethat ‘s 
sohonestandkeenlyobservedthatitdoesn’tfeellikeone 

[74 75 76 77 78 79 80 13 9 38 81 12 82 83 13 84 85 86 
87 65 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0] 

thefilmprovidessomegreatinsightintotheneuroticmindse
tofallcomicseventhosewhohavereachedtheabsolutetopo
fthegame 

[1 89 90 91 92 93 94 1 95 96 34 97 98 19 99 100 68 101 
1 102 103 34 1 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0] 

offersthatrarecombinationofentertainmentandeducation 
[105 13 77 106 34 107 12 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0] 

perhapsnopictureevermadehasmoreliterallyshowedthatt
heroadtohellispavedwithgoodintentions 

[109 110 111 112 113 114 115 116 117 13 1 118 5 119 
3 120 121 71 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

steersturnsin a snappyscreenplaythatcurlsattheedgesit ‘s 
socleveryouwanttohateitbuthesomehowpullsitoff 

[123 124 125 17 126 127 13 128 129 1 130 84 9 38 131 
63 132 5 133 84 58 14 134 135 84 136 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

Source: compiled by the author. 
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The analysis of the above data on the example of one training step of a conventional RNN 
was performed using the formulas described in the second section. First, the weights 𝑈𝑈, 𝑊𝑊, 𝑉𝑉 of 
the neural network were initialised randomly using the standard normal distribution (21-23): 

U=[[-2.00456907e-03, -8.34052357e-04, 6.10279870e-04, 
2.98218282e-04, 9.35577816e-04, -2.73085004e-03, 
1.13186633e-03, 2.93236646e-04, 1.92821343e-04, 

1.45058171e-03, -3.73766472e-04, -4.42388945e-04], 
[-2.70303440e-04, 3.22807853e-04, 6.87949363e-04, 
1.24186513e-03, 7.46562625e-04, 1.86563700e-04, 

-9.20280693e-04, 9.53312541e-04, -1.10615129e-03, 
-1.10598617e-03, -8.35331015e-04, -1.87544232e-03], 
[5.01363176e-04, -9.24946704e-04, 2.13172721e-03, 
-2.30123171e-03, 1.18675087e-03, 8.67312143e-04, 
4.67885259e-04, -1.90070662e-03, -1.07344439e-04, 
-6.60950010e-04, -9.38031675e-04, 1.20613743e-03], 
[-1.04895964e-03, -3.54182117e-05, 1.20204007e-03, 
-1.49670460e-03, -1.78542349e-05, 5.55857297e-04, 
4.86410704e-05, 5.80639118e-04, 4.02617033e-04, 

-4.98332578e-04, -6.88800337e-04, -2.04081040e-03], 
[5.98590384e-04, -7.36782837e-04, 8.56020828e-04, 
-4.00714846e-04, -1.07904359e-03, -5.26005845e-05, 
-2.67968309e-04, 2.74468294e-04, -2.34090581e-04, 
1.11609294e-03, -1.00539672e-03, -4.84710832e-04], 
[-1.51924959e-03, 1.64434894e-03, 1.56213856e-04, 
-1.35289399e-03, 4.88548883e-05, 8.84324689e-04, 
-6.45691326e-04, -8.06647654e-04, 6.94644673e-04, 
3.83385077e-05, -1.08716131e-03, -5.18897641e-04], 
[4.86007242e-04, 3.82236344e-04, -5.03780216e-04, 
-5.38758226e-04, -6.90489313e-04, 8.36563848e-04, 
-2.34637708e-03, 1.44254311e-03, -4.16121256e-05, 
4.07545900e-04, 9.08219628e-04, -1.38770469e-03], 
[9.26889193e-04, -9.10883671e-04, -1.24136589e-03, 
6.46345510e-04, -1.08363613e-04, 3.11623071e-04, 
1.44847470e-03, 1.75157354e-03, -1.41342266e-03, 
-3.16462417e-04, 5.04558895e-05, 1.29151023e-03], 
[6.76194441e-04, -7.30576819e-04, 1.17405100e-03, 
-5.22469350e-04, 1.42111622e-03, -9.51555785e-04, 
-2.03822068e-03, -4.65060799e-04, -2.67421725e-03, 
1.98944518e-03, -9.24845568e-05, -5.08209844e-04], 
[8.84437086e-04, 4.74557193e-04, -8.22125491e-04, 
-5.05219400e-05, 1.45807120e-03, 6.08441881e-04, 
-2.18019454e-04, 1.24282506e-03, 6.48709211e-05, 

-1.49215696e-03, -8.20555645e-04, 3.76936320e-04], 
[-1.66276520e-06, 7.58396673e-04, -8.92426805e-04, 
9.28591574e-04, -8.14924826e-04, 7.81197309e-04, 
3.07809045e-04, -3.29337032e-03, -9.40217371e-04, 

-1.00550139e-03, -3.65265185e-04, -2.24458795e-04], 
[-2.44486783e-04, 1.23370027e-04, -7.45227268e-04, 
-5.77545648e-04, 4.89536133e-04, 5.91256474e-04, 

-1.78993055e-03, -2.76947331e-03, -7.93885838e-06, 
1.94844011e-04, -1.99312866e-04, 3.38654328e-04]], (21) 

 
W=[[-7.43501058e-04, 1.13945632e-03, 2.71596508e-03, 

6.83213773e-04, 3.67918030e-04, -1.24179678e-03, 
4.21751712e-04, 1.50503537e-03, -8.56542758e-04, 
1.00762307e-04, 7.17365791e-04, 1.51315637e-03, 

6.09443791e-04, -1.01827016e-03, -3.78503815e-04, 
-1.70011665e-03, -8.91450449e-04, 1.94388497e-04], 
[-1.72146197e-03, 5.67313869e-04, 7.92918946e-04, 
-9.29384449e-04, -1.62428072e-04, 3.48908579e-04, 
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-2.39202090e-04, 5.67652365e-04, -2.59817590e-04, 
1.63069431e-03, -2.10457961e-03, 7.18617451e-04, 
1.13670752e-03, 5.54216340e-04, -2.06734280e-03, 
6.09246538e-04, -7.71383392e-04, 3.68883349e-04], 
[-1.74287629e-04, 2.14087598e-03, 1.35637737e-03, 
-7.34809974e-04, -9.11367887e-04, 1.57182967e-04, 
-1.53899671e-03, 3.40326624e-04, -1.60058378e-04 
 -1.56729154e-03, 4.25455264e-04, 5.87848314e-05, 
-5.00407737e-05, -4.05929107e-04, -1.62461135e-03, 
1.20197458e-03, -1.76014949e-03, -8.34966591e-04], 
[6.09153394e-04, 3.73298147e-04, 7.59758625e-04, 
3.76298435e-04, -5.20334544e-04, -7.35782230e-04, 
-1.04365545e-03, 2.56117182e-04, -2.03382281e-03, 
1.67316466e-03, -1.00568158e-03, -8.29733445e-04, 
-1.02387087e-03, -4.35958028e-04, 3.68695265e-04, 
5.15849235e-04, 1.36106059e-03, 4.06744080e-04], 
[8.75547059e-05, 1.00182012e-03, 8.29474157e-04, 
-1.47439758e-04, 2.36613439e-05, -6.89341343e-04, 
5.83526975e-04, -2.43163973e-05, -1.67937825e-04, 
1.75877924e-04, 1.65482455e-03, -5.83321893e-04, 

-1.20862307e-03, -1.13386203e-03, -1.04186466e-03, 
-6.91273610e-04, -1.14799489e-04, 4.86630674e-04], 
[-1.30327635e-03, -1.61791617e-03, -5.67636990e-04, 
6.46376907e-04, 8.88009287e-04, -1.29191249e-03, 
1.41325038e-03, 2.17118457e-03, 1.01552883e-03, 

1.48617835e-03, -1.48429087e-03, -2.03796678e-04, 
6.52084473e-04, 1.31820340e-03, -1.83054445e-03, 

1.39339255e-03, -1.80003356e-04, -5.04561851e-04], 
[9.68814534e-04, -4.25911385e-04, -7.15609093e-04, 
1.55393186e-03, 1.14034155e-03, -8.26087630e-04, 
-2.67735732e-04, 6.87901233e-04, 1.16043724e-03, 
-5.63456218e-04, -1.54130581e-05, 7.02852308e-04, 
3.45119565e-04, 1.49392689e-04, 1.97596737e-03, 

-2.30287667e-05, 8.42035270e-04, -1.34766097e-03], 
[-1.41206943e-03, 5.03993973e-05, -6.73991833e-04, 
-1.45240979e-03, 8.62530937e-05, -1.17570864e-03, 
-3.96391720e-04, -7.78602663e-05, 1.35673320e-04, 
-1.68444191e-04, -2.88154553e-04, 2.60281519e-04, 
-5.44921102e-04, 9.19103268e-04, 8.37950658e-04, 

-1.91479886e-03, 7.28326869e-04, -1.87211398e-03], 
[1.27126127e-03, -7.94735334e-04, -6.09872172e-04, 
7.88531050e-04, -5.31216003e-04, 3.65503364e-04, 

-7.20699580e-04, -1.92067965e-03, -8.26947417e-04, 
-5.24688360e-04, -2.32615824e-04, 7.92341691e-04, 
1.80021848e-03, 1.57361850e-03, 6.23740703e-04, 

1.14223262e-03, -7.36898731e-04, -1.72218062e-03], 
[1.24967947e-03, -3.99473435e-04, 2.02734792e-03, 
-3.76105023e-04, -1.74571177e-04, -5.20932309e-04, 
1.10343809e-03, -2.17150734e-04, -1.65242278e-05, 
7.72270978e-04, -1.38699112e-04, -1.07715531e-03, 
-9.66706468e-05, -1.17833491e-03, -7.70796009e-04, 
-1.30135852e-03, -1.46655035e-04, -2.15277291e-04], 
[ 3.62839955e-04, 1.42670053e-03, 1.20191656e-03, 
-3.75126260e-04, 1.64015236e-04, -9.07869068e-04, 
2.77180986e-03, -2.10635378e-04, -1.72432980e-04, 
7.83437578e-04, -1.14828276e-03, -8.62950857e-04, 
1.60885201e-03, 7.71301617e-04, 1.38947992e-03, 

7.78340340e-05, -1.03855478e-03, -8.72731154e-04], 
[-5.37873976e-04, -7.92708678e-04, -7.76586129e-04, 
-1.89621443e-03, 1.90244359e-03, -1.53229409e-03, 
-9.95312560e-04, -3.34126850e-04, -5.95603171e-04, 
4.39441070e-04, -1.27540524e-04, 1.16436721e-03, 
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-1.13342838e-04, -7.81671085e-04, 1.28612465e-03, 
-3.85553064e-04, 1.84815410e-03, 4.05814493e-04]], (22) 

 
V=[[2.45870624e-04, -3.87342067e-05, -4.04186783e-04, 

1.28670309e-03, 2.51081193e-04, 8.24950409e-04, 
-1.54277976e-03, -5.44293303e-04, -1.49104413e-03, 
1.46696367e-04, 3.75921175e-03, 1.65118961e-03], 

[-1.02563196e-03, 1.51516964e-03, -1.03714671e-04, 
1.45839393e-03, -6.99300673e-04, -1.14206067e-03, 
-2.67702479e-05, -1.86604511e-06, 2.22941322e-04, 

-2.71639587e-04, 3.69203145e-04, -1.51000287e-03]]. (23) 

In addition, initialise {𝑥𝑥𝑡𝑡}𝑡𝑡=1𝑇𝑇  – the representation vector of the input sentence. For example, 
the sentence “Moviewasgood” will be indexed as [0 1 2]. At each step of the calculation, the 
unitary vector of each word will be used as 𝑥𝑥𝑡𝑡, the length of which will correspond to the number 
of unique words in the dataset. In the above case, there are three of them, thus unitary vectors for 
each word: 
− word “Movie” has an index of 0, and its unitary vector is [1, 0, 0]; 
− word “was” having an index of 1, and its unitary vector is [0, 1, 0]; 
− word “good” has an index of 2, and its unitary vector is [0, 0, 1]. 
Applying formula (1) for each unitary vector 𝑥𝑥𝑡𝑡, taking the zero vector as the initial value of 𝐻𝐻𝑡𝑡−1, 
obtained (24): 
 

[[-0.00013509] 
[ 0.00013733] 
[ 0.00045064] 
[-0.00079666] 
[-0.00062898] 
[ 0.00120057] 
[-0.00044855] 
[ 0.00047876] 
[-0.00038644] 
[ 0.00113644] 
[ 0.00036988] 
[-0.00076792]]. (24) 

The vector of initial values is obtained (25) using expression (2): 

[[-0.01000172] 
[ 0.01000092]]. (25) 

Using function 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥, the final predictions were calculated (26): 

[[0.49499951] 
[0.50500049]]. (26) 

To improve the results of the neural network, the weights are recalculated using the back-
propagation method. This technique plays a crucial role in adjusting the network parameters based 
on the mismatch between the predicted outputs and the actual goals. Different optimisation 
algorithms can be used to improve the optimisation process. These algorithms, such as stochastic 
gradient descent or its variants such as Adam or RMSprop, introduce additional methods to 
improve the weight updates. They often include momentum, adaptive learning rate, or other 
enhancements to speed up convergence and avoid getting stuck in local minima. 
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IDENTIFICATION AND EVALUATION OF QUALITY INDICATORS OF 
DIFFERENT TYPES OF ARCHITECTURE 

To determine and evaluate the qualitative indicators of different architectures, a software 
implementation of RNNs for binary classification of the processed dataset is performed. The 
Python programming language and the TensorFlow machine learning library are used as 
development tools. The software performed a training cycle of each type of RNN for 100 epochs 
(15000 steps). The qualitative indicators of each neural network (training time in seconds, accuracy) 
obtained after the training process are presented in Table 3. 

Table 3. Recurrent neural network training results 

Name Time, s Number of steps Accuracy on test data 
Recurrent neural 

network 1337 15000 0.67893 

Long short-term 
memory 2136 15000 0.722326 

Gated recurrent 
units 1815 15000 0.729193 

Source: compiled by the author. 

Comparing the data in Table 3, it can be concluded that the fastest training time for a simple RNN 
is 1337 seconds, but its accuracy is inferior to LSTM and GRU. Therewith, the accuracy rates of 
LSTM and GRU are almost the same (72.2% and 72.9%, respectively), but GRU is trained faster 
(1815 c, versus 2136 c for LSTM). Subsequently, the hyperparameter of the output vector 
dimension was changed to better analyse the qualitative performance of different architectures. 
When establishing an instance of the RNN class in the training cycle, the value of the hidden_size 
variable, which contains information about the output vector of each layer, was changed. Table 4 
presents the results of training a conventional RNN when the dimension of the output vector of 
the recurrent layer of the network is 12, 64, 128, and 512. 

Table 4. Training results with different dimensions of the output vector for RNN 

Size Time, s Number of steps Accuracy on test data 
12 615 15000 0.62879 
64 960 15000 0.64276 
128 1337 15000 0.67893 
512 4679 15000 0.6398 

Source: compiled by the author. 

The dependence of training time and accuracy on the dimensionality of the output vector for 
RNNs is presented in Figure 12. 
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Figure 12. Dependence of training time and accuracy on the dimension of the output vector 
for RNN 

 

Source: compiled by the author. 

A similar analysis was conducted for other types of architecture. Thus, Table 5 presents the results 
of training LSTM and GRU, respectively. The values of the dimension of the output vector of the 
recurrent network layer are similar to those for the RNN case. 

Table 5. Training results with different dimensions of the output vector for LSTM and 
GRU 

Size Time, s Number of steps Accuracy on test data 
Long short-term memory 

12 869 15000 0.70275 
64 1136 15000 0.70541 
128 2136 15000 0.722326 
512 8330 15000 0.70172 

Gated recurrent units 
12 763 15000 0.69439 
64 916 15000 0.71341 
128 1815 15000 0.729193 
512 6716 15000 0.70452 

Source: compiled by the author. 

The dependencies of training time and accuracy on the dimensionality of the output vector for 
LSTM and GRU are presented in Figure 13, respectively. 

Figure 13. Dependence of training time and accuracy on the dimensionality of the output 
vecti=or a) for LSTM and b) GRU 
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a) 

 
b) 

Source: compiled by the author. 

The experimental results demonstrated that when the output vectors of the recurrent layer were 
too large, the model tended to overfit the data, which led to a drop-in accuracy. The overfitting 
problem was observed when the output vector size exceeded 512. On the other hand, the best 
accuracy on the test dataset was obtained for all neural network architectures when the output 
vector size was set to 128, indicating that this was the optimal size for the problem at hand. 
Therefore, it was concluded that a larger output vector size does not improve the performance of 
the model but only increases its complexity. At the final stage, a completely different class of 
networks was used for the same task – a CNN (Table 6). 

Table 6. CNN and RNN training results 

Name Time, s Number of steps Accuracy on test data 
Convolutional neural 

networks 1845 15000 0.70893 

Recurrent neural networks 1337 15000 0.67893 
Long short-term memory 2136 15000 0.722326 

Gated recurrent units 1815 15000 0.729193 

Source: compiled by the author. 

A comparison of the 4 examined neural networks in terms of their training time and accuracy is 
presented in Figure 14. 

Figure 14. Graph comparing the 4 examined neural networks in terms of their training time 
and accuracy 

 

Source: compiled by the author. 
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Based on the results of training the CNN, it was found that the training period lasted slightly longer 
than that of the GRU. However, the accuracy obtained by the CNN was in the range of the results 
obtained by the RNN, indicating that CNNs can be used for this classification problem. Notably, 
the VRV RNN architecture performed the best among all the networks considered. Thus, it can 
be concluded that both CNNs and RNNs have their advantages and can be used in different 
scenarios based on the specific requirements of the problem at hand. 
 
To summarise, RNNs, especially LSTM networks, have demonstrated their success in capturing 
the sequential nature of textual data. They can retain the memory of previous inputs, and their 
output depends on the current input and the previous hidden state. This makes them particularly 
suitable for tasks such as sentiment analysis, where the meaning of a word or phrase may depend 
on the context of the surrounding text. On the other hand, in recent years, CNNs have been 
successfully applied to natural language processing tasks. They are especially suitable for tasks that 
require the identification of local features in the input data, such as text classification, and can learn 
meaningful representations of text data by identifying important features at different levels of 
abstraction. CNNs have been proven to be particularly effective for short to medium texts, such 
as product reviews or tweets, and can outperform conventional word-of-mouth approaches. In 
general, the choice between RNNs and CNNs for text classification depends on the specific 
problem and dataset. While RNNs are better suited for capturing sequential dependencies in long 
texts, CNNs can perform well with short to medium texts by extracting local features and can be 
trained faster than RNNs. However, notably, there is frequently no clear winner and both 
architectures should be explored and compared for a particular task. 

DISCUSSION 

The field of neural network research is constantly evolving, with new architectures and methods 
being developed regularly. By considering a range of architectures, researchers can keep abreast of 
the latest advances and contribute to the development of the field. Including other architectures in 
future research is necessary to explore the full range of possibilities and determine the most 
appropriate models for specific neural networking tasks (25-29). By including other architectures in 
future research, it will expand understanding of their capabilities and explore their effectiveness in 
different domains. In addition, including a diverse set of architectures helps to identify potential 
synergies and opportunities for hybrid models that combine the strengths of several approaches. 
 
P. Zhou et al. (30) in their research consider one of these networks and solve the problem of efficient 
representation and classification of text data. They propose a new architecture that combines a 
bidirectional LSTM, a type of RNN capable of extracting contextual information from past and 
future sequences, with a two-dimensional maximum pooling, a technique commonly used in 
computer vision tasks. The key idea behind their approach is to exploit the bidirectional nature of 
LSTM to capture both sequential dependencies in text and contextual information from both areas. 
By integrating the bidirectional LSTM with a two-dimensional maximal pooling, the model can 
extract important features from the text representation while preserving the spatial relations 
between words (31-34). The study by P. Zhou et al. (30) can complement the main study by providing 
valuable information on various aspects of text classification using neural networks. A comparative 
analysis of different RNN and CNN architectures allows us to understand the relative strengths 
and weaknesses of these models in terms of training time and accuracy. 
 
C. Zhou et al. (35) solve the problem of efficiently capturing local and global contextual information 
from text sequences. Conventional methods, such as RNNs and CNNs, have limitations in 
capturing long-term dependencies or maintaining spatial relations between words. The Z-LSTM 
architecture is designed to overcome these limitations. The key idea of the Z-LSTM model is to 
combine the strengths of CNN and LSTM. The research proposes a hierarchical structure where 
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convolutional layers are followed by LSTM layers. Convolutional layers act at the character level, 
highlighting local features and preserving spatial relations. These features are then passed on to the 
LSTM layer, which captures global dependencies and the context of the text. Conversely, study by 
C. Zhou et al. (35) can benefit from the findings of the authors study by benchmarking its Z-LSTM 
model against established RNN and CNN architectures, providing a more robust assessment of its 
effectiveness and highlighting its unique advantages in capturing both local and global contextual 
information in text sequences. Together, these studies can contribute to a richer and more nuanced 
understanding of neural network approaches for text processing. 
 
Thus, in the work of L. Huang et al. (36) propose a new approach to text classification using graph 
neural networks (GNN). The authors argue that conventional approaches to text classification, 
which treat text as an unordered collection of words, are unable to capture the rich semantic 
relationships between words and phrases in natural language. To address this problem, they 
propose a framework that creates a graphical representation of text where nodes correspond to 
words or phrases and edges represent semantic relationships between them. They then apply a 
GNN to represent this graph to learn a high-level representation of the text that is fed into the 
classifier. The research evaluates the proposed approach on several benchmark text classification 
datasets and demonstrates that it outperforms several state-of-the-art approaches. By combining 
the author’s and L. Huang et al. (36) findings, researchers can potentially create hybrid models that 
leverage the strengths of both RNNs/CNNs and GNNs, achieving even higher accuracy in text 
classification tasks while efficiently capturing semantic information within the text data. 
 
The research of R. Wang et al. (37) proposes a hybrid deep learning architecture for text classification 
that combines the advantages of RNNs and CNNs. The authors argue that while CNNs are 
effective in capturing local patterns in text, they have difficulty capturing long-term dependencies, 
while RNNs are excellent at modelling sequential data but may miss important local patterns. To 
overcome these limitations, the authors propose a convolutional recurrent neural network (CRNN) 
architecture that combines both RNNs and CNNs. The model first applies a series of convolutional 
layers to the input text, removing local features. The resulting object maps are then fed into an 
RNN that captures long-term relationships between local objects. Finally, the RNN output is fed 
to a fully connected layer for classification. The authors evaluate their approach on several 
benchmark text classification datasets and demonstrate that it outperforms several state-of-the-art 
approaches, including traditional RNNs and CNNs. The main and R. Wang et al. (37) studies provide 
a more comprehensive toolkit for researchers and practitioners in the field of text classification, 
offering a range of model choices and innovative hybrid solutions to tackle different text 
classification challenges. 
 
In addition, an approach using RNNs and CNNs is presented in G. Chen et al. (38). The research 
considers the problem of categorising text with multiple labels when a document can belong to 
several categories simultaneously. The authors propose an integrated approach that combines two 
types of neural networks. Here, CNNs are used to extract features from the input text through a 
series of convolution and pooling operations, and RNNs are used to model temporal dependencies 
between words in the input text using long-term short-term memory units. As a result, the 
proposed approach combines the strengths of both types of architecture. In particular, CNNs are 
used to capture local features of the input text, while RNNs are used to capture global features and 
temporal dependencies between words. The research of the authors of this article and the results 
of G. Chen et al. (38), combined, offer a broader perspective on the application of RNNs and CNNs 
in text analysis, allowing researchers to make an informed choice based on the specific requirements 
of their text classification tasks. 
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Another interesting approach is shown in the work of J.S. Manoharan (39). The researcher proposes 
using a capsule network (CapsNet) for text classification. CapsNets are a type of neural network 
that uses “capsules” instead of traditional neurons, which can encode various spatial relationships 
between objects. The author argues that CapsNets are better suited for text classification than 
conventional neural networks as they can capture hierarchical relationships between words and 
phrases. The proposed architecture consists of several layers of capsules that gradually aggregate 
information from the input text. The capsules in each layer compute a “pose matrix” that encodes 
the position, orientation, and scale of the input item. The pose matrices are then transformed by a 
series of “routing” layers that compute a weight matrix indicating the degree to which each capsule 
should be assigned to a higher-level capsule. The authors of the present study consider text 
classification from a different perspective, focusing on existing neural networks, while J.S. 
Manoharan (39) proposes a completely new architecture. The choice between these approaches will 
depend on the specific requirements and characteristics of the text classification task. 
 
J. Faouzi and O. Colliot (40) explored the main classic machine learning methods. According to the 
results, RNNs excel at handling sequential data, as they maintain memory of previous inputs and 
are adept at understanding context and relationships in a sequence. They can capture long-term 
dependencies, crucial for tasks involving longer texts. However, they struggle with very long 
sequences, are computationally intensive, and can be memory-intensive. On the other hand, CNNs 
are efficient for parallel processing, excellent at extracting local features, and effective for shorter 
texts where local context matters. Nevertheless, they may not capture the sequential nature of text 
as effectively as RNNs and are limited by fixed input sizes, making them less suitable for very long 
texts. In general, CNNs perform well on short texts like sentences or short paragraphs, while 
RNNs, particularly LSTMs and GRUs, shine in handling longer texts for tasks like machine 
translation or document summarization. Together with the author’s study, J. Faouzi and O. Colliot 
(40) work offer a nuanced perspective on the versatility of neural network architectures in text 
processing, enabling practitioners to make informed decisions when selecting models for various 
text classification tasks. 
 
In summary, comparing the performance of RNNs and CNNs for semantic text colouring analysis 
is crucial. Currently, RNNs outperform traditional machine learning algorithms, achieving high 
accuracy and F1 scores, while CNNs are continually improving for text classification. However, it's 
important to acknowledge that neither RNNs nor CNNs are flawless, and there are limitations to 
their performance. Additionally, given the ever-evolving nature of natural language processing, 
exploring alternative models like GNN, CRNN, or CapsNet is equally important. 

CONCLUSIONS 

In this research, a comparative analysis of RNN architectures and CNNs was performed using the 
example of the binary text classification task. Comparing the data presented in Section 3, it can be 
concluded that a simple RNB is the fastest to train (1337 seconds), but its accuracy is inferior to 
LSTM and GRU. Therewith, the accuracy rates of LSTM and GRU are almost the same (LSTM – 
72.2%, GRU – 72.9%), but GRU is trained faster (GRU – 1815 seconds, LSTM – 2136 seconds). 
The training period for CNN took a little longer than for GRU, and the accuracy is within the 
range of the results of a conventional RNN, thus, it can be concluded that CNN can be used for 
this classification problem. However, RNNs proved to be the best. The obtained results provide 
valuable information about the effectiveness of RNNs and CNNs for classifying semantic 
colouring in text. By analysing various metrics, the performance of each model architecture was 
evaluated. In addition, metrics such as training time and accuracy were considered to provide a 
comprehensive evaluation of the models. The results of the study add to the existing knowledge in 
the field of text classification. They demonstrate a practical implementation of RNNs and CNNs 
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for sentiment analysis and provide valuable insights into the performance of these models in terms 
of their ability to accurately classify movie viewing sentiment. 
 
In summary, analysis highlights the importance of carefully selecting parameters to match a 
dataset’s underlying patterns. In sentiment analysis task, RNNs outperformed other classifiers, such 
as CNNs, due to RNNs’ aptitude for sequential data processing, a key feature of textual data. 
Hence, for similar tasks, we recommend considering RNN-based architectures. However, it’s 
important to note that this conclusion is dataset-specific, and different datasets or architectures 
may yield different results. 
 
The practical significance of this study lies in its demonstration of the operational process of RNNs 
using Python and TensorFlow, with a specific application in sentiment analysis of film reviews. By 
leveraging the power of Python’s simplicity and TensorFlow’s flexibility, the study showcases the 
entire pipeline of developing a neural network model, including data pre-processing, model 
architecture design, training, evaluation, and deployment. Future research should focus on testing 
various models and architectures to enhance the accuracy and efficiency of text classification 
systems in this evolving field. 
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