Análisis comparativo de algoritmos de estimación de la edad basados en el procesamiento de imágenes

Autores/as

DOI:

https://doi.org/10.15649/2346030X.3960

Palabras clave:

estimación de la edad, interacción persona-ordenador, visión artificial, imágenes faciales, redes neuronales

Resumen

El cuerpo humano crece y se desarrolla con la edad. La interacción persona-ordenador específica para cada edad (ASHCI) tiene un amplio potencial de aplicación en la vida cotidiana. Una de las principales razones es que los efectos del envejecimiento en los rostros humanos presentan varias características únicas, lo que hace que la estimación de la edad sea una tarea difícil que requiere enfoques de clasificación no estándar. La estimación de la edad se complica aún más por las condiciones ambientales incontrolables, los datos de entrenamiento insuficientes e incompletos, las fuertes variaciones específicas de cada persona y la amplia gama de edades. En situaciones de la vida real, las aplicaciones de visión artificial que requieren la estimación automática de la edad a partir de imágenes faciales han suscitado un interés cada vez mayor. En este artículo, analizamos las principales perspectivas utilizadas para mejorar el rendimiento de los sistemas de estimación de la edad, presentamos diversas técnicas empleadas en la estimación de la edad y destacamos dónde se están llevando a cabo estudios experimentales. Además, describimos brevemente varias bases de datos sobre el envejecimiento que contienen información relacionada con la edad. Por último, presentamos un análisis comparativo de los métodos más utilizados en función de las técnicas que emplean.

Referencias

[1] A. Othmani , A. Taleb, H. Abdelkawy and A. Hadid, “Age estimation from faces using deep learning: A comparative analysis,” Computer Vision and Image Understanding, 196, 2020.

[2] Umirzakova, Sabina & Whangbo, Teag Keun, “Edge‐based effective active appearance model for real‐time wrinkle detection”, Skin Research and Technology, 2020, 27. doi:10.1111/srt.12977.

[3] M. Sawant and K. Bhurchundi, “Ordinal Regression with Multiple Output CNN for Age Estimation,” IEEE Access, 2018.

[4] M. M. Sawant, K. M. Bhurchandi, “Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging”, Artificial Intelligence Review, 52, 2019, 981–1008, doi: 10.1007/s10462-018-9661-z.

[5] M. Benkaddour, “CNN Based Features Extraction for Age Estimation and Gender Classification”, Informatica, 45, 2021, doi: 10.31449/inf.v45i5.3262.

[6] H. Liao, Y. Yan, W. Dai, and P. Fan, “Age Estimation of Face Images Based on CNN and Divide-and-Rule Strategy,” Hindawi, Mathematical Problems in Engineering, Volume 2018, 2018.

[7] N. Hasan and S. Mahdi, “Facial Features Extraction using LBP for Human Age Estimation Based on SVM Classifier”, IEEE International Conference on Computer Science and Software Engineering (CSASE), 2020.

[8] O. Osman, “An Effective Age Estimation Method using Scattering Transform,” International Journal of New Technology and Research (IJNTR),Volume-6, 2020.

[9] A. Shejul, K. Kinage, and B. Reddy, “CDBN: Crow Deep Belief Network Based on Scattering and AAM Features for Age Estimation,” Journal of Signal Processing Systems 93, 2021, pg. no. 879–897.

[10] S. Hiba and Y. Keller, “Hierarchical Attention-based Age Estimation and Bias Estimation,” Computer Vision and Pattern Recognition, arXiv.org, 2021.

[11] A. Micheal and P. Geetha, “A Novel Hybrid Feature Framework for Multi-View Age Estimation,” Applied Artificial Intelligence, An International Journal, Volume 35, 2021.

[12] C. Xiao, Z. Zhifeng, C. Jie and Z. Qian, "Combined Deep Learning With Directed Acyclic Graph SVM for Local Adjustment of Age Estimation," in IEEE Access, vol. 9, pp. 370-379, 2021, doi: 10.1109/ACCESS.2020.3046661.

[13] A. Sakata, Y. Makihara, N. Takemura, D. Muramatsu, and Y. Yagi, “How Confident Are You in Your Estimate of a Human Age? Uncertainty-aware Gait-based Age Estimation by Label Distribution Learning,” IEEE Inter national Joint Conference on Biometrics (IJCB), 2020.

[14] N. Liu, “Chronological Age Estimation of Lateral Cephalo metric radiographs with deep learning,” IEEE Transaction on Medicak Imaging, 2021.

[15] P. Siritanawan, H. Ichikawa and K. Kotani, “Facial Age Progression using Conditional Generative Adversarial Network with Heritable Visual Features,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021,pp. 1449-1454.

[16] C. Hu, J. Gao, J. Chen, D. Jiang and Y. Shu, "Fine-Grained Age Estimation With Multi-Attention Network," in IEEE Access, vol. 8, 2020, pp. 196013-196023.

[17] J. Xie and C. Pun, "Deep and Ordinal Ensemble Learning for Human Age Estimation From Facial Images," in IEEE Transactions on Information Forensics and Security, vol. 15, 2020, pp. 2361-2374.

[18] Z. Bao, Z. Tan, J. Wan, X. Ma, G. Guo and Z. Lei, "Divergence-Driven Consistency Training for Semi-Supervised Facial Age Estimation," in IEEE Transactions on Information Forensics and Security, vol. 18, 2023, pp. 221-232.

[19] F. Dornaika, S. Bekhouche, and I. Carreras. "Robust regression with deep CNNs for facial age estimation: An empirical study", Expert Systems with Applications 141, 2020.

[20] B. Zhang and Y. Bao, "Cross-Dataset Learning for Age Estimation," in IEEE Access, vol. 10, 2022, pp. 24048-24055.

[21] O. Agbo-Ajala and S. Viriri, "A Lightweight Convolutional Neural Network for Real and Apparent Age Estimation in Unconstrained Face Images," in IEEE Access, vol. 8, 2020, pp. 162800-162808.

[22] A. Takeda, T. Nakagawa, M. Takaso, M. Nakamura, and M. Hitosugi, “Exploring the potential for age estimation using facial image sensing technology for postmortem in vestigation,” Elsevier, Legal Medicine, Volume 48, 2020.

[23] M. Sawant, K. M. Bhurchandi, “Discriminative aging subspace learning for age estimation”, Soft Comput 26, 2022, 9189–9198, doi: 10.1007/s00500-022-07333-z.

[24] “The FG-NET Aging Database,” http://sting.cycollege.ac.cy/alanitis/ fgnetaging/index.htm, 2002.

[25] K. Ricanek and T. Tesafaye, “Morph: A longitudinal image database of normal adult age-progression,” Proceedings of IEEE 7th International Conference on Automatic Face and Gesture Recognition, IEEE, Southampton, 2006, pp. 341–345.

[26] G. Antipov, M. Baccouche, S. Berrani, and J. Dugelay, “Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,” IEEE Conference on Computer Vision and Pattern Workshops(CVPRW), 2016.

[27] P.Phillips, H. Moon, S. Rizvi and P.Rauss, “The FERET Evaluation Methodology for Face-Recognition Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, 2000, pp. 1090- 1104.

[28] B. Chen, C. Chen and W. Hsu, “Cross-Age Celebrity Dataset (CACD),” ECCV 2014, Springer International Publishing Switzerland, Part VI, LNCS 8694, 2014, pp. 768-783.

[29] S. Escalera, J. Fabian, P. Pardo, X. Baro, J. Gonzalez, H. J. Escalante, D. Misevic, U. Steiner, and I. Guyon, “Chalearn looking at people 2015: Apparent age and cultural event recognition datasets and results,” Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015, pp. 1–9.

[30] C. Xu, Y. Makihara, G. Ogi, X. Li, Y. Yagi and J. Lu, “The OU-ISIR Gait Database comprising the Large Population Dataset with Age and performance evaluation of age estimation,” IPSJ Transactions on Computer Vision and Applications, 2017.

[31] M. Minear and D. Park, “A lifespan database of adult facial stimuli. Behavior Research Methods,” Instruments, and Computers, 36, 2004, pp. 630–633.

[32] Z. Huang, J. Zhang, and H. Shan, “When Age-Invarient Face Recognition Meets Face Age Synthesis: A Multi Task Learning Framework,” Computer Vision and Pattern Recognition, arXiv.org, 2021.

[33] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou, “Agedb: the first manually collected, in-the-wild age database,” IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, pp 51–59.

[34] T. Zheng, W. Deng, and J. Hu, “Cross-age lfw: A database for studying cross-age face recognition in unconstrained environments”, arXiv.org, 2017.

[35] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Ordinal Regression with Multiple Output CNN for Age Estimation,” IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Descargas

Publicado

01-05-2025

Cómo citar

[1]
R. Jumbadkar, V. Kamble, and M. Parate, “Análisis comparativo de algoritmos de estimación de la edad basados en el procesamiento de imágenes”, AiBi Revista de Investigación, Administración e Ingeniería, vol. 13, no. 2, pp. 1–14, May 2025, doi: 10.15649/2346030X.3960.

Descargas

Los datos de descarga aún no están disponibles.

Número

Sección

General

Artículos similares

1-10 de 386

También puede Iniciar una búsqueda de similitud avanzada para este artículo.