Mejoramiento de la resistencia a la corrosión de las mezclas de hierro e itrio mediante pulvimetalurgia

Autores/as

DOI:

https://doi.org/10.15649/2346030X.2517

Palabras clave:

Óxido de Itrio, Hierro, Corrosión, Pulvimetalúrgia

Resumen

Se fabrica por vía Pulvimetalúrgica mezcla de 0%, 1%, 3%, 5%, 7% contenido en peso de Óxido de Itrio en Hierro Fe; con el fin de establecer la influencia del cerámico en el metal al ser expuesto en una solución con contenido de cloruro de sodio. Las probetas son sometidas a caracterización estructural obtenida mediante difracción de rayos X (DRX), mientras que el análisis de las propiedades electroquímicas se llevó a cabo mediante el estudio de las curvas de polarización y espectroscopia de impedancias electroquímica. La caracterización luego del ensayo de deterioro se realizó mediante DRX para las diferentes mezclas, los productos de corrosión se identificaron con DRX. A partir de los resultados se obtuvo la aleación mecánica y evidenciando nuevas fases (Óxido de itrio y hierro) y (Hierro de itrio) producto del proceso de la fabricación. Las muestras presentaron resistencia a la corrosión respecto al aumento del cerámico en el metal debido a la formación de las fases generadas por la mezcla, sin embargo, se determinó que el porcentaje más adecuado es el 5%, debido a que es la cantidad óptima incorporada al hierro, capaz de conferirle las propiedades de protección frente a la corrosión.

Referencias

A. Elsayed, J. Umeda, K. Kondoh, Effect of quenching media on the properties of TiNi shape memory alloys fabricated by powder metallurgy, Journal of Alloys and Compounds, Volume 842, 2020, 155931, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2020.155931.

S. Parvizi, S. Mahdi-Hashemi, F. Asgarinia, M. Nematollahi, M. Elahinia, Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods A review, Progress in Materials Science, 2020, 100739, ISSN 0079-6425, https://doi.org/10.1016/j.pmatsci.2020.100739.

S. Raynova, F. Yang, L. Bolzoni, Mechanical behaviour of induction sintered blended elemental powder metallurgy Ti alloys, Materials Science and Engineering A, Volume 799, 2021, 140157, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2020.140157.

K. Maclin, J. Vasanth, P. S. Lokendar-Ram, V. Pon-Anand, M. Prabu, S. Rahul, Experimental investigation of mechanical and tribological properties of Aluminium metal matrix composites fabricated by powder metallurgy route – A review, Materials Today: Proceedings, 2020, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.07.057.

M. F. Stroosnijder, J. D. Sunderkötter, M. J. Cristóbal, H. Jenett, K. Isenbügel, M.A. Baker, The influence of yttrium ion implantation on the oxidation behaviour of powder metallurgically produced chromium, Surface and Coatings Technology, Volume 83, Issues 1–3, 1996, Pages 205-211, ISSN 0257-8972, https://doi.org/10.1016/0257-8972(95)02741-6.

Y. Zhuang, X. Zhang, T. Peng, H. Fan, X. Zhang, Q. Yan, A. A. Volinsky, Effects of yttrium oxides on the microstructure and mechanical properties of 15-15Ti ODS alloy fabricated by casting, Materials Characterization, Volume 162, 2020, 110228, ISSN 1044-5803, https://doi.org/10.1016/j.matchar.2020.110228.

Z. Lv, Y. Wu, J. Dang, D. Liu, L. Hu, K. Du, H. Sun, Effect of yttrium on morphologies and size of tungsten carbide particles prepared through CO reduction, Journal of Materials Research and Technology, Volume 9, Issue 5, 2020, Pages 10166-10174, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.07.028.

A. P. Shivprasad, S. C. Vogel, V. K. Mehta, M. W. D. Cooper, T. A. Saleh, J. T. White, J. R. Wermer, E. P. Luther, H. R. Trellue, Thermophysical properties of high-density, sintered monoliths of yttrium dihydride in the range 373–773 K, Journal of Alloys and Compounds, Volume 850, 2021, 156303, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2020.156303.

Y. Long, J. Che, Z. Wu, H. T. Lin, F. Zhang, High entropy alloy borides prepared by powder metallurgy process and the enhanced fracture toughness by addition of yttrium, Materials Chemistry and Physics, Volume 257, 2021, 123715, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2020.123715.

Z. Xiao, H. Geng, Ch. Sun, P. Jia, H. Luo, Effect of yttrium on properties of copper prepared by powder metallurgy, Advanced Powder Technology, Volume 26, Issue 4, 2015, Pages 1079-1086, ISSN 0921-8831,https://doi.org/10.1016/j.apt.2015.05.003.

K. Chen, J. Peng, C. Srinivasakannan, S. Yin, S. Guo, L. Zhang, Effect of temperature on the preparation of yttrium oxide in microwave field, Journal of Alloys and compounds, Volume 742, 2018, Pages 13-19, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2018.01.258.

ASTM G3-14(2019), Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing, ASTM International, West Conshohocken, PA, 2019.

ASTM G59-97(2020), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2020.

M. Saremi, Z. Valefi, Thermal and mechanical properties of nano-YSZ–Alumina functionally graded coatings deposited by nano-agglomerated powder plasma spraying, Ceramics International, Volume 40, Issue 8, Part B, 2014, Pages 13453-13459,ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2014.05.068.

K. J. Hwang, M. Shin, Y. Wook-Lee, M. H. Lee, H. Lee, T. H. Shin, Effects of YSZ powder properties on its corrosion behaviour for solid oxide membrane (SOM) electrolysis process, Journal of the European Ceramic Society, Volume 39, Issue 15, 2019, Pages 4864-4873, ISSN 0955-2219, https://doi.org/10.1016/j.jeurceramsoc.2019.06.048.

D. Salehzadeh, P. Marashi, Z. Sadeghian, E. deposited Ni(OH)2-YSZ and NiO-YSZ nanocomposite coatings, microstructural and electrochemical evaluation, Surface and Coatings Technology, Volume 381, 2020, 125155, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2019.125155.

S. Yin, J. Cizek, C. Chen, R. Jenkins, G. O'Donnell, R. Lupoi, Metallurgical bonding between metal matrix and core-shelled reinforcements in cold sprayed composite coating, Scripta Materialia, Volume 177, 2020, Pages 49-53, ISSN 1359-6462, https://doi.org/10.1016/j.scriptamat.2019.09.023.

F. Khodabakhshi, A. Simchi, The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites, Materials & Design, Volume 130, 2017, Pages 26-36, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2017.05.047.

Z. Deng, H. Yin, C. Zhang, G. Zhang, W. Li, T. Zhang, R. Zhang, X. Jiang, X. Qu, Microstructure and mechanical properties of Cu–12Al–xNi alloy prepared using powder metallurgy, Materials Science and Engineering: A, Volume 759, 2019, Pages 241-251, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2019.05.051.

A. Elsayed, M. Bahlol, A. Zayed, Effect of Ti addition on properties of porous Fe-Ni-Co-Al high entropy alloy manufactured by powder metallurgy, Materials Today: Proceedings, Volume 24, Part 2, 2020, Pages 942-948, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.04.406.

L. Bolzoni, Low-cost Fe-bearing powder metallurgy Ti alloys, Metal Powder Report, Volume 74, Issue 6, 2019, Pages 308-313, ISSN 0026-0657, https://doi.org/10.1016/j.mprp.2019.01.007.

S. Dhar, A. Jena, S. C. Patnaik, S. K. Sahoo, Omkar Tripathy, A study on microstructure and mechanical properties of aluminium matrix composites with micro-sized iron fillers produced by powder metallurgy route, Materials Today: Proceedings, 2020, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.03.733.

W. Li, Q. Hu, Y. Liu, M. Zhang, J. Wang, X. Han, C. Zhong, W. Hu, Y. Deng, Powder metallurgy synthesis of porous Ni-Fe alloy for oxygen evolution reaction and overall water splitting, Journal of Materials Science & Technology, Volume 37, 2020, Pages 154-160, ISSN 1005-0302, https://doi.org/10.1016/j.jmst.2019.06.021.

S. Ehtemam-Haghighi, H. Attar, I. V. Okulov, M. S. Dargusch, D. Kent, Microstructural evolution and mechanical properties of bulk and porous low-cost Ti–Mo–Fe alloys produced by powder metallurgy, Journal of Alloys and Compounds, Volume 853, 2021, 156768, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2020.156768.

A. Muhammad, A. Faiz , S. M. Puteri, Y. Noorhana, A. Muhammad, Investigation of boron effect on the densification of Fe-50%Ni soft magnetic alloys produced by powder metallurgy route, Materials Today: Proceedings, Volume 16, Part 4, 2019, Pages 2210-2218, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2019.06.112.

L. Xiangrong, L. Junbo, J. Xiong, Y. Lu, G. Qingshan, S. Xiangyu, G. Zhixing, H. Tao, L. Mengxia, Wear and corrosion resistant Mn-doped austenitic cast iron prepared by powder metallurgy method, Journal of Materials Research and Technology, Volume 9, Issue 3, 2020, Pages 6376-6385, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.03.099.

M. Dehestani, K. Trumble, H. Wang, H. Wang, L. A. Stanciu, Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy, Materials Science and Engineering: A, Volume 703, 2017, Pages 214-226, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2017.07.054.

C. Jiang, J. Lu, W. Liu, Y. Xing, F. Zhang, Y. Chen, Corrosion resistance of plasma-sprayed Fe-based coatings by using core-shell structure powders, Journal of Materials Research and Technology, Volume 9, Issue 6, 2020, Pages 12273-12280, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.08.081.

W. Xu, X. Lu, J. Tian, C. Huang, M. Chen, Y. Yan, L. Wang, X. Qu, C. Wen, Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications, Journal of Materials Science & Technology, Volume 41, 2020, Pages 191-198, ISSN 1005-0302, https://doi.org/10.1016/j.jmst.2019.08.041.

N Singh, O. P. Kumar, Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy, Journal of Physics and Chemistry of Solids, Volume 114, 2018, Pages 8-20, ISSN 0022-3697,https://doi.org/10.1016/j.jpcs.2017.10.045.

W. Aperador, J. C. Caicedo, C. España, G. Cabrera, C. Amaya, Bilayer period effect on corrosion–erosion resistance for [TiN/AlTiN]n multilayered growth on AISI 1045 steel, Journal of Physics and Chemistry of Solids, Volume 71, Issue 12, 2010, Pages 1754-1759, ISSN 0022-3697.

J. Čapek, K. Stehlíková, A. Michalcová, Š. Msallamová, D. Vojtěch, Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X = Pd, Ag and C) alloys, Materials Chemistry and Physics, Volume 181, 2016, Pages 501-511, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2016.06.087.

M. C. Conti, B. Mallia, E. Sinagra, P. Schembri-Wismayer, J. Buhagiar, D. Vella, The effect of alloying elements on the properties of pressed and non-pressed biodegradable Fe–Mn–Ag powder metallurgy alloys, Heliyon, Volume 5, Issue 9, 2019, e02522, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2019.e02522.

Publicado

09/01/2021

Cómo citar

[1]
W. A. Aperador-Chaparro, I. I. Angarita-Moncaleano, y M. N. López-Camargo, «Mejoramiento de la resistencia a la corrosión de las mezclas de hierro e itrio mediante pulvimetalurgia», AiBi Revista de Investigación, Administración e Ingeniería, vol. 9, n.º 3, pp. 23–31, sep. 2021.

Número

Sección

Artículos de Investigación

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.