Caracterización de nanobarras de Al-doped ZnO crecidos por el método de deposición química en baño
DOI:
https://doi.org/10.15649/2346075X.463Palabras clave:
ZnO; Al-Doped; CBD; Nanostructure; Nanorods; StructureResumen
Introduction: In recent years a metal oxide semiconductors have been paid attention due to their excellent chemical and physical properties.
ZnO (Zinc oxide) is considered as one of the most attractive semiconductor materials for implementation in photo-detectors, gas sensors, photonic crystals, light emitting diodes, photodiodes, and solar cells, due to its novel electrical and optoelectronic properties. There are different uses of metal oxide semiconductors such us, UV photodetectors which are useful in space research’s, missile warning systems, high flame detectors, air quality spotting, gas sensors, and precisely calculated radiation for the treatment of UV-irradiated skin. ZnO is a metal oxide semiconductors and it is used as a transparent conducting oxide thin film because it has the best higher thermal stability, best resistance against the damage of hydrogen plasma processing and relatively cheaper if one compares it with ITO. Materials and Methods: On glass substrates, Al-doped ZnO (AZO) nanorods have been grown by a low -cost chemical bath deposition (CBD) method at low temperature. The seed layer of ZnO was coated on glass substrates. The effect of the Al-doping on the aligned, surface morphology, density, distribution, orientation and structure of ZnO nanorods are investigated. The Al-doping ratios are 0%, 0.2%, 0.8% and 2%. The Aluminum Nitrate Nonahydrate (Al (NO3)3.9H2O) was added to the growth solution, which is used as a source of the aluminum dopant element. The morphology and structure of the Al-doped ZnO nanorods are characterized by field emission scanning electron microscopy (FESEM) and high-resolution X-ray diffractometer (XRD). using the radio RF (Radio frequency) magnetron technique. Results and Discussion: The results show that the Al-doping have remarkable effects on the topography parameters such as diameter, distribution, alignment, density and nanostructure shape of the ZnO nanorods. These topography parameters have proportionally effective with increases of the Al-doping ratio. Also, X-ray diffraction results show that the Al-doping ratio has a good playing role on the nanostructure orientation of the ZnO nanorods. Conclusions: The Aluminum Nitride Nanohydrate considered as a good Aluminu source for doping ZnONR. It is clear from FESEM results that the Al-doping of ZnONR has a remarkable effect on the surface topography of nanorods for all aluminum doping ratios. From XRD patterns, it concludes that as the Al-doping ratio increases, the reorientation of the nanostructure of ZnO increases towards [100] direction. The results obtained also have shown that the average diameter of a nanorod is increased with increasing the ratio of Al-doping.
Referencias
Saxena K, Kumar A, Malik N, Kumar P, and Jain V K, et al. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium-doped zinc oxide nanorods, Bull. Mater. Sci., 2014 April; 37(2): 295-300. https://doi.org/10.1007/s12034-014-0653-6
T.K, B. H and Aiura Y, et al. photovoltaic effect observed in transparent p-n heterojunctions based on oxide semiconductors, Thin Solid Films, 2003; 445: 327-331. https://doi.org/10.1016/S0040-6090(03)01177-5
Hsu C. and Chen D, et al. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films, Nanotechnology. 2010; 21(28): 285603. https://doi.org/10.1088/0957-4484/21/28/285603
Raimondi D. L, et al.. High resistivity transparent ZnO thin films, J. Vaccum Science Technol., 1969; 7: 96-99. https://doi.org/10.1116/1.1315841
Oda J, et al. Improvements of spatial resistivity distribution in transparent conducting Al-doped ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films, 2010; 518: 2984-2987. https://doi.org/10.1016/j.tsf.2009.09.174
Yen W., et al. Influences on optoelectronic properties of damp heat stability of AZO and GZO for thin film solar cells. Advanced Materials Research: Multi-Functional Materials and Structures II, 2009; 79: 923-926. https://doi.org/10.4028/www.scientific.net/AMR.79-82.923
Law M, Greene L E, Johnson J C, S. R and Yang P D, et al. Nanowire dye-sensitized solar cells. Nature Mater, 2005; 4: 455. https://doi.org/10.1038/nmat1387
Zhen G, Dongxu Z, Yichun L, Dezhen S, Jiying Z, Binghui Li, et al. Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Applied. Physics. Lett. 2008; 93: 163501. https://doi.org/10.1063/1.3003877
Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advance Mater, 2003; 15: 464. https://doi.org/10.1002/adma.200390108
Greene L. Law M, Goldberger J, Kim F, Johnson J, Zhang Y, Saykally R , Yang P,et al. Angew. Chem., Int. Edn, 2003; 42: 3031. https://doi.org/10.1002/anie.200351461
Sun Y, Riley J, Michael N, et al. Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. Journal Physics. Chem. B, 2006; 110: 15186. https://doi.org/10.1021/jp062299z
Natsume Y, Sakata H, et al. Mater. Chem. Phys.,2002; 78: 170. https://doi.org/10.1016/S0254-0584(02)00314-0
Juarez S., Silver T, A Oritz, E Zironi, Rickards J,et al. Electrical and optical properties of fluorine-doped ZnO thin films prepared by spray pyrolysis. Thin Solid Films, 1998; 333: 196. https://doi.org/10.1016/S0040-6090(98)00851-7
Yamamoto Y, Saito K, Takakashi K, Konagai M, et al. Sol. Energy Mater. Sol. Cells. 2001; 65: 125. https://doi.org/10.1016/S0927-0248(00)00086-6
Tang W and Cameron D C, Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process, Thin Solid Films, vol. 238, pp. 83, 1994. https://doi.org/10.1016/0040-6090(94)90653-X
Herrero J and Guillen C, et al. Improved ITO Thin Films for Photovoltaic Applications With a Thin ZnO Layer by Sputtering. Thin Solid Films, 2004; 451/452: 630. https://doi.org/10.1016/j.tsf.2003.11.050
Abdulrahman A, Ahmed S, Ahmed N, Almessiere M, et al. Different Substrates Effects On The Topography and the structure Of The ZnO NR Grown By Chemical Bath Deposition Method. Digest Journal of Nanomaterials and Biostructures, 2016; 11 (3): 1007 - 1016.
Abdulrahman A, Ahmed S, Ahmed N, and Almessiere, et al. Novel Process Using Oxygen And Air Bubbling In Chemical Bath Deposition Method For Vertically Well Aligned Arrays Of Zno Nanorods. Digest Journal of Nanomaterials and Biostructures, 2016; 11(4): 1073-1082.
Kashif M. Hashim U, Ali M, Syed M, Rusop M, Ibupoto Z, Willander M, et al. Effect of Different Seed Solutions on the Morphology and Electro optical Properties of ZnO Nanorods.Hindawi Publishing Corporation Journal of Nanomaterials, 2012; 2012: Article ID 452407, 6 pages. https://doi.org/10.1155/2012/452407
Suryanarayana C, Norton G, et al. X-Ray Diffraction: A Practical Approach. Springer Science and Business Media, 1998; LLC, 233 Spring Street, New York, NY 10013, USA: Plenum Press.
Warren B. X-ray Diffractio Courier Dover Publications, New York, 1969.
Tsay C, Fan K, Chen S, Tsai C, et al. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. Journals of Alloys and Compounds, 2010; 495(1): 126-130. https://doi.org/10.1016/j.jallcom.2010.01.100
Cullity B. Elements of X-ray Diffraction second edition, Addison Wesley, 2007.
Hsu C, Chen D, et al. Synthesis and conductivity enhancement of Al-doped ZnO NR array thin films. Nanotechnology, 2010; 21: 285603. https://doi.org/10.1088/0957-4484/21/28/285603
Wang L, Lin B, Hung M, Zhou L, Panin G, Kang T, Fu D,et al. Optical and electrical properties of hydrothermally grown Al-doped ZnO nanorods on graphene/Ni/Si substrate. Solid-State Electronics, 2013; 82: 99-102. https://doi.org/10.1016/j.sse.2013.01.012
Abdulrahman A, Ahmed S, Ahmed N, et al. The Influence of The Growth Time on the Size and Alignment of ZnO Nanorods. Science Journal of University of Zakho, 2017; 5(1): 128-135. https://doi.org/10.25271/2017.5.1.313
Yang-Ming L, Jian-Fu T, et al. Electro-optical and structural properties of Al-doped ZnO nanorod arrays prepared by hydrothermal process. International Journal of Science and Engineering, 2013; 3(2): 11-15.
Descargas
Publicado
Cómo citar
Número
Sección
Altmetrics
Descargas
Licencia
Todos los artículos publicados en esta revista científica están protegidos por los derechos de autor. Los autores retienen los derechos de autor y conceden a la revista el derecho de primera publicación con el trabajo simultáneamente licenciado bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) que permite compartir el trabajo con reconocimiento de autoría y sin fines comerciales.
Los lectores pueden copiar y distribuir el material de este número de la revista para fines no comerciales en cualquier medio, siempre que se cite el trabajo original y se den crédito a los autores y a la revista.
Cualquier uso comercial del material de esta revista está estrictamente prohibido sin el permiso por escrito del titular de los derechos de autor.
Para obtener más información sobre los derechos de autor de la revista y las políticas de acceso abierto, por favor visite nuestro sitio web.