Bioactive compounds and microbiological analysis of hydroalcoholic extracts of Peruvian purple corn cob var. Canteño obtained by ultrasound.
DOI:
https://doi.org/10.15649/2346075X.4117Keywords:
Purple corn, Ultrasound, byproduct, extraction, phytochemicalAbstract
Introduction. The cob is a byproduct generated from the marketing of purple corn grains. Currently, bioactive compounds are extracted from purple corn using conventional techniques that require substantial volumes of solvents and extended extraction periods. Objective. To determine the content of phenolic compounds and perform a microbiological analysis of purple corn cob extracts obtained by ultrasound. Materials and methods. The extract was prepared with 80% ethanol (pH 2.3) at a sample-to-solvent ratio of 1:12.5 (g/mL). The extraction process was performed using an ultrasonic bath (480 W, 40 KHz, 45°C for 90 minutes). Physicochemical and microbiological analyses were conducted on the purple corn cob powder and the hydroalcoholic extract, focusing on anthocyanin and phenolic compound content, as well as antioxidant activity. Results and discussion. The results indicated that the powdered cob had a high mineral and carbohydrate content, while the extract exhibited significant levels of anthocyanins (34.52 mg cyanidin-3-glucoside/g dry sample), phenolic compounds (324.59 mg gallic acid/g dry sample), and antioxidant activity (1327 μmol Trolox/g dry sample) compared to the control sample. Notably, the hydroalcoholic extract was free from molds and yeasts, unlike the purple corn cob powder. Conclusion. The ultrasound-processed extract of purple corn cob has potential applications as a food additive to retard oxidation and microbiological spoilage in food products.
References
Kim H, Lee K, Kim M, Hong M, Deepa P, Kim S. Review of the Biological Properties of Purple Corn (Zea mays L.). Sci. Pharm. 2023;91(1):6. https://doi.org/10.1159/000078626
Rungsiri C, Khaetthareeya S, Ariya R. Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes. J. Ethnopharmacol. 2017; 201(6):9-16. https://doi.org/10.1016/j.jep.2017.02.044
Koo W. Maíz Morado Perú Exportación 2023 febrero. Agrodataperu [serial on line] 2023. Available from: URL: https://www.agrodataperu.com/2023/03/maiz-morado-peru-exportacion-2023-febrero.html.
Instituto Nacional de Innovación Agraria. Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.). 2022. Available from: https://repositorio.inia.gob.pe/handle/20.500.12955/1692
Duarte AS, Jiménez JA, Pineda JA, González CA, García M. Extracción de sustancias bioactivas de Pleurotus ostreatus (Pleurotaceae) por maceración dinámica. Acta Biolo Colomb. 2020; 25(1):61-74. https://doi.org/10.15446/abc.v25n1.72409
Muangrat R, Pongsirikul I, Blanco PH. Ultrasound assisted extraction of anthocyanins and total phenolic compounds from dried cob of purple waxy corn using response surface methodology. J Food Process Preserv. 2018;42(2):1-11. https://doi.org/10.1111/jfpp.13447
Devi SR, Kumari T, Deka SC. Extraction of dietary fiber and phytochemicals from bottle gourd seeds (Lagenaria siceraria), its physicochemical properties and application in food model. Food Chem Adv. 2023;2(100252):1-8. https://doi.org/10.1016/j.focha.2023.100252
Zhang Y, Yu L, Jin W, Li C, Wang Y, Wan H, et al. Simultaneous optimization of the ultrasonic extraction method and determination of the antioxidant activities of hydroxysafflor yellow A and anhydrosafflor yellow B from safflower using a response surface methodology. Molecules. 2020;25(5):12-26. https://doi.org/10.3390/molecules25051226
Yuniati Y, Elim PE, Alfanaar R, Kusuma HS, Mahfud, A. Extraction of anthocyanin pigment from hibiscus sabdariffa l. by ultrasonic-assisted extraction. IOP Conf Ser Mater Sci Eng. 2021;1010(1):12-32. https://doi.org/10.1088/1757-899X/1010/1/012032
De Souza Ribeiro MM, Viganó J, de Novais NS, de Souza Mesquita LM, Kamikawachi RC, Vilegas W, et al. The effect of ultrasound on improving the extraction of tannins from the Stryphnodendron adstringens bark. Sustain Chem Pharm. 2023;33(101044):1-14. https://doi.org/10.1016/j.scp.2023.101044
Norma técnica peruana NTC 205.037:1975. Determinación de humedad en harinas. Instituto Nacional de Calidad [serial on line] 2016.
Instituto ecuatoriano de normalización. Norma técnica peruana INEN 520:2013: Determinación de cenizas. Quito (Ecuador): Instituto ecuatoriano de normalización; 2013.
Instituto ecuatoriano de normalización. Norma técnica peruana INEN 523:1980-12: Determinación de grasas o extracto etéreo harinas de origen vegetal. Quito (Ecuador): Instituto ecuatoriano de normalización; 1980.
Instituto ecuatoriano de normalización. Norma técnica peruana INEN 519:1980-12: Determinación de proteinas harinas de origen vegetal. Quito (Ecuador): Instituto ecuatoriano de normalización; 1980.
Humeres F. Determinación de congéneres (esteres y aldehídos) en bebidas alcohólicas destiladas empleando una técnica volumétrica. Available from: URL: https://repositorio.umsa.bo/bitstream/handle/123456789/19065/PG-342.pdf?equence=1&isAllowed=y
Yolci P, Acoglu B, Ozdal T, Utku O, Ece C. Extraction Techniques for Plant-Based Bio-active Compounds. Available from: URL: https://doi.org/10.1007/978-981-13-7205-6_18
Rajha HN, Khabbaz S, Rached RA, Debs E, Maroun RG, Louka N. Optimization of polyphenols extraction from purple com cobs using ß-cyclodextrin as a green solvent. In: 5th International Conference on Renewable Energies for Developing Countries, editors. Conference on Renewable Energies for Developing Countries. Canada: REDEC; 2020. https://doi.org/10.1109/REDEC49234.2020.9163876
Barba FJ, Rajha HN, Debs E, Abi-Khattar AM, Khabbaz S, Dar BN, et al. Optimization of polyphenols’ recovery from purple corn cobs assisted by infrared technology and use of extracted anthocyanins as a natural colorant in pickled turnip. Molecules. 2022;27(16):5222.
https://doi.org/10.3390/molecules2716522219.
Zhu L, Chaoxin X, Yue S, Xingxing D, Shuiyuan C, Jingren H, Yi H. Process optimization, structural characterization, and antioxidant activities of black pigment extracted from Enshi seleniumenriched Sesamum indicum L. LWT. 2023;173:114-223. https://doi.org/10.1016/j.lwt.2022.114223
Quan V, Goldsmith C, Thanh T, Tang V, Jyoti D, Sadeqzadeh E, Scarlett C, Bowyer M. Optimisation of Ultrasound-Assisted Extraction Conditions for Phenolic Content and Antioxidant Capacity from Euphorbia tirucalli Using Response Surface Methodology. Antioxidants 2014;3:604-617. https://doi.org/10.3390/antiox3030604
AOAC International. Official methods of Analysis of AOAC International. 18th ed. Maryland (US): AOAC INTERNATIONAL; 2005.
Singleton V, Rossi J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1985;16(3):144-58. https://doi.org/10.5344/ajev.1965.16.3.144
Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med. 1999;27(11-12):1173-1181. https://doi.org/10.1016/S0891-5849(99)00203-8
Andrews W, Hammack T. Food sampling/preparation of sample homogenate. In: Food and Drug Administration, editors. Bacteriological Analytical Manual. White Oak: FDA;2020. p. 1-13.
Tournas V, Stack M, Mislivec P, Koch H, Bandler R. Yeasts, molds and mycotoxins. In: Food and Drug Administration, editors. Bacteriological Analytical Manual (BAM). White Oak: FDA;2022. p. 1-25.
Feng P, Weagant S, Grant M, Burkhard W. Enumeration of Escherichia coli and the Coliform bacteria. In: Food and Drug Administration, editors. Bacteriological Analytical Manual (BAM). White Oak: FDA;2020. p. 1-25.
Andrews W, Wang H, Jacobson A, Ge B, Zhang G, Hammack T. BAM. chapter 5: Salmonella. In: Food and Drug Administration, editors. Bacteriological Analytical Manual (BAM). White Oak: FDA;2023. p. 1-34.
Urquizo E, Sánchez N. Purple corn extract as a chemical indicator. Chakiñan 2021;11(722).
Hernández-Santos B, Lerdo-Reyes AA, Téllez-Morales JA, Rodríguez-Miranda J. Chemical composition, techno-functional properties, and bioactive components of blends of blue corn/purple sweet potato for its possible application in the food industry. J Food Meas Charact. 2023;17(2):1909-20. https://doi.org/10.1007/s11694-022-01767-7
Ranilla LG, Rios-Gonzales BA, Ramírez-Pinto MF, Fuentealba C, Pedreschi R, Kalidas S. Primary and phenolic metabolites analyses, in vitro health-relevant bioactivity and physical characteristics of purple corn (Zea mays L.) grown at two Andean geographical locations. Metabolites. 2021;11(11):722. https://doi.org/10.3390/metabo11110722
Jordan-Meille L, Holland J, McGrath S, Glendining M, Thomas L, Haefele S. The grain mineral composition of barley, oat and wheat on soils with pH and soil phosphorus gradients. Eur J Agron. 2021;(126):126281. https://doi.org/10.1016/j.eja.2021.126281
Díaz-García A, Salvá-Ruíz B, Bautista-Cruz N, Condezo-Hoyos L. Optimization of a natural low-calorie antioxidant tea prepared from purple corn (Zea mays L.) cobs and stevia (Stevia rebaudiana Bert.). Lebenson Wiss Technol. 2021;150(111952). https://doi.org/10.1016/j.lwt.2021.111952
Medina T, Cañedo D, Aguirre C, Tello H. Línea de base de la diversidad genética del maíz peruano con fines de bioseguridad. Ministerio del Ambiente [serial on line] 2018. Available from: URL: https://bioseguridad.minam.gob.pe/wp-content/uploads/2019/01/Linea-de-base-ma%C3%ADz-LowRes.pdf
Charmongkolpradit S, Phatchana R, Sang-aroon W, Somboon T, Tanwanichkul B. Influence of drying temperature on anthocyanin and moisture contents in purple waxy corn kernel using a tunnel dryer. Case Stud Therm Eng. 2021;23(100886). https://doi.org/10.1016/j.csite.2021.100886
Fuleki T, Francis F. Quantitative methods for anthocyanins: 2. Determination of total anthocyanin and degradation index for cranberry juice. J Food Sci. 1960;33:78-83. https://doi.org/10.1111/j.1365-2621.1968. tb00888.x
Fernández A, Iglesias D, Cartaya R, Arencibia A. Obtaining an extract rich in anthocyanins from the flower of majagua (Talipariti Elatum S.W.). Jour CENAC 2020;51(2):122-130.
Ruilin R, Huimin Z, Feng Y, Yang D, Zhao Z, Zhao S. The effect of different solvents and acidifying reagents on the anthocyanin profiles and antioxidant capacity of purple corn. Chem Pap. 2022;76(8):4691-704. https://doi.org/10.1007/s11696-022-02195-z
Juthamat R, Chawalit Y, Panyada P, Patcharapol P, Pimolwan S, Suthida S, et al. Polyphenol and Tryptophan Contents of Purple Corn (Zea mays L.) Variety KND and Butterfly Pea (Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis. Plants 2023;12(603). https://doi.org/10.3390/plants12030603
Boateng ID, Kumar R, Daubert CR, Flint-Garcia S, Mustapha A, Kuehnel L, et al. Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. Ultrason Sonochem. 2023;95(106418). https://doi.org/10.1016/j.ultsonch.2023.106418
Zhang Y, Yu L, Jin W, Li C, Wang Y, Wan H, et al. Simultaneous optimization of the ultrasonic extraction method and determination of the antioxidant activities of hydroxysafflor yellow A and anhydrosafflor yellow B from safflower using a response surface methodology. Molecules 2020;25(5):1226. https://doi.org/10.3390/molecules25051226
Velez P. Evaluación Microbiológica y Cuantificación de Antocianinas en el Extracto Acuoso de la Coronta de Maíz Morado (Zea mays L.), tratado con Ultrasonido. Available from: URL: https://repositorio.unas.edu.pe/server/api/core/bitstreams/4ef6a2eb-c77b-41c2-be79-54800ae51c0f/content
Rodríguez-Salinas PA, Urías-Orona V, Muy-Rangel D, Heredia JB, Suarez-Jacobo A, BáezGonzález JG, et al. Efecto de termosonicación y pasteurización sobre propiedades fisicoquímicas, microbiológicas y nutracéuticas en bebidas de maíz. Biotecnia 2021;23(1):92-101. https://doi.org/10.18633/biotecnia.v23i1.1204
Suket N, Srisook E, Hrimpeng K. Antimicrobial Activity of the Anthocyanins Isolated from Purple Field Corn (Zea mays L.) Cob against Candida spp. J Pharm Biol Sci. 2014;9(4):40-4. https://doi.org/10.9790/3008-09424044
Qin Y, Liu Y, Yuan L, Yong H, Liu J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019;96:102-11. https://doi.org/10.1016/j.foodhyd.2019.05.017
Downloads
Published
How to Cite
Issue
Section
Altmetrics
Downloads
License
Copyright (c) 2024 Innovaciencia
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published in this scientific journal are protected by copyright. The authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits sharing the work with authorship recognition and without commercial purposes.
Readers may copy and distribute the material from this journal issue for non-commercial purposes in any medium, provided the original work is cited and credit is given to the authors and the journal.
Any commercial use of the material from this journal is strictly prohibited without written permission from the copyright holder.
For more information on the copyright of the journal and open access policies, please visit our website.