Numeric leak detection model for pipe system.

Authors

  • July Andrea Gómez-Camperos Universidad Francisco de Paula Santander Ocaña.
  • Pedro Julián García-Guarín Universidad Nacional de Colombia.
  • Christian Nolasco-Serna Universidad Francisco de Paula Santande Ocaña.

DOI:

https://doi.org/10.15649/2346030X.723

Keywords:

Pipe systems, Leak analysis, Darcy's law, Reynolds' theorem, Turbulence mode.

Abstract

Distribution using hydraulic networks defines the planning, production, and flexibility of hydro-management in companies.
However, leaks represent economic losses in terms of maintenance and fault location. In this context, the flow and pressure at the time a fault
occurs, are the analysis variables. As the first contribution of this research, we propose to simulate volumetric water losses. OpenFOAM free
software is the computational tool and the turbulence model k-ω was selected for fluid in transition, that is, fluid that is between the laminar and
turbulent regime. The second contribution of this research consists of an algorithm to detect leaks in a pipe system. The algorithm is based on
Reynolds' theorem. Regarding the results obtained with the Reynolds Theorem, we can say that results are compared with a real hydraulic
network, obtaining percentage errors of 4% for the best data and 9% for the worst, and an average distance to find the leak equal to 2.7 meters
was shown that the pressure drops linearly according to Darcy's law. In connection with the results, in traditional methods pressure gauges are
installed along the pipes to identify this pressure drop if the number of gauges is not sufficient, the leak can pass undetected. The method
proposed in this project allows locating the leak only using 2 manometers. Which makes it more practical for difficult access pipes.

Author Biographies

July Andrea Gómez-Camperos, Universidad Francisco de Paula Santander Ocaña.

Universidad Francisco de Paula Santander Ocaña, Colombia

Pedro Julián García-Guarín, Universidad Nacional de Colombia.

Universidad Nacional de Colombia, Colombia

Christian Nolasco-Serna, Universidad Francisco de Paula Santande Ocaña.

Universidad Francisco de Paula Santande Ocaña, Colombia

References

J.A.C. Carrillo, “Método de detección y ubicación de fugas, en ductos de gran longitud, mediante velocidad de propagación de onda de presión negativa, en ductos con mediciones de presión multipunto,” 2012.

A. De-Coster et al., “Towards an improvement of GPR-based detection of pipes and leaks in water distribution networks,” J. Appl. Geophys., vol. 162, pp. 138–151, 2019.

M. Sánchez, “Modelado de flujo en tuberías para detectar y localizar fugas utilizando un enfoque de observador de estado,” Rev. Tec. la Fac. Ing. Univ. del Zulia, vol. 29, no. 1, pp. 1–2, 2006.

C. Bermúdez, J.R. Santos-Ruiz, I. López-Estrada, F.R. Besançon, G. Torres, L. Valencia-Palomo y CONACyT, “Modelado y simulación de una red hidr aulica para diagnostico de fugas,” pp. 10–12, 2018.

R. Carrera, R., Verde y Cayetano, “on de un SCADA para Localizar Fugas en Ductos,” Memorias del XVI Congr. Latinoam. Control Automático, CLCA 2014, 2014.

K. Li, X. Zhou, R. Tu, Q. Xie, J. Yi y X. Jiang, “An experimental investigation of supercritical CO2 accidental release from a pressurized pipeline,” J. Supercrit. Fluids, vol. 107, pp. 298–306, 2016.

W. Liang, L. Zhang, Q. Xu, y C. Yan, “Gas pipeline leakage detection based on acoustic technology,” Eng. Fail. Anal., vol. 31, pp. 1–7, 2013.

P. Wang, L. Xiong, Y. Sun, H. Wang y G. Tian, “Features extraction of sensor array based PMFL technology for detection of rail cracks,” Meas. J. Int. Meas. Confed., vol. 47, no. 1, pp. 613–626, 2014.

A. Cataldo et al., “Recent advances in the TDR-based leak detection system for pipeline inspection,” Meas. J. Int. Meas. Confed., vol. 98, pp. 347–354, 2017.

S. Tian, J. Du, S. Shao, H. Xu y C. Tian, “A study on a real-time leak detection method for pressurized liquid refrigerant pipeline based on pressure and flow rate,” Appl. Therm. Eng., vol. 95, pp. 462–470, 2016.

Y. Zhang, S. Chen, J. Li y S. Jin, “Leak detection monitoring system of long distance oil pipeline based on dynamic pressure transmitter,” Meas. J. Int. Meas. Confed., vol. 49, no. 1, pp. 382–389, 2014.

S.K. Mandal, F.T.S. Chan y M.K. Tiwari, “Leak detection of pipeline: An integrated approach of rough set theory and artificial bee colony trained SVM,” Expert Syst. Appl., vol. 39, no. 3, pp. 3071–3080, 2012.

Z. Qu, H. Feng, Z. Zeng, J. Zhuge y S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Meas. J. Int. Meas. Confed., vol. 43, no. 4, pp. 513–519, 2010.

P.S. Murvay y I. Silea, “A survey on gas leak detection and localization techniques,” J. Loss Prev. Process Ind., vol. 25, no. 6, pp. 966–973, 2012.

S. Datta y S. Sarkar, “Una revisión sobre diferentes métodos de detección de fallas en tuberías,” Rev. prevención pérdidas en las Ind. procesos Vol. 41 , mayo 2016 , páginas 97-106 Una, pp. 1–32, 2016.

P. Gupta, T.T. Thein-Zan, M. Wang, J. Dauwels y A. Ukil, “Leak detection in low-pressure gas distribution networks by probabilistic methods,” J. Nat. Gas Sci. Eng., vol. 58, no. July, pp. 69–79, 2018.

C.W. Liu, Y.X. Li, Y.K. Yan, J.T. Fu y Y.Q. Zhang, “A new leak location method based on leakage acoustic waves for oil and gas pipelines,” J. Loss Prev. Process Ind., vol. 35, pp. 236–246, 2015.

A. Abdulshaheed, F. Mustapha y A. Ghavamian, “A pressure-based method for monitoring leaks in a pipe distribution system: A Review,” Renew. Sustain. Energy Rev., vol. 69, no. January 2016, pp. 902–911, 2017.

X. Wang, J. Lin, A. Keramat, M.S. Ghidaoui, S. Meniconi y B. Brunone, “Matched-field processing for leak localization in a viscoelastic pipe: An experimental study,” Mech. Syst. Signal Process., vol. 124, pp. 459–478, 2019.

C. Liu, Y. Li y M. Xu, “An integrated detection and location model for leakages in liquid pipelines,” J. Pet. Sci. Eng., vol. 175, no. June 2018, pp. 852–867, 2019.

R. Verde, C. Molina y L. Carrera, “Practical issues of leaks diagnosis in pipelines,” IFAC Proc. Vol., vol. 44, no. 1 PART 1, pp. 12337–12342, 2011.

R. Moujaes, Samir y Gundavelli, “CFD simulation of leak in residential HVAC ducts,” Energy Build. 2012, vol. 54, p. 534-539., pp. 1–2, 2012.

H. Zhu, P. Lin y Q. Pan, “A CFD (computational fluid dynamic) simulation for oil leakage from damaged submarine pipeline,” Energy, vol. 64, pp. 887–899, 2014.

N.U. Aydemir, A. Trottier, T. Xu, M. Echlin y T. Chin, “Coupling of reactor transient simulations via the SALOME platform,” Ann. Nucl. Energy, vol. 126, pp. 434–442, 2019.

J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta y T. Kaltiaisenaho, “The Serpent Monte Carlo code: Status, development and applications in 2013,” Ann. Nucl. Energy, vol. 82, pp. 142–150, 2015.

D. R. Fuhrman, “Una caja de herramientas de generación de olas para la biblioteca de CFD de código abierto: OpenFoam®,” Numer. METHODS FLUIDS, pp. 10–11, 2019.

Y. Cao y T. Tamura, “Large-eddy simulations of flow past a square cylinder using structured and unstructured grids,” Comput. Fluids, vol. 137, pp. 36–54, 2016.

C.J. Greenshields, “OpenFOAM,” no. July, 2019.

M.E.A. Cristancho, “Maskay Modelamiento y simulación de un quadrotor mediante la integración de Simulink y SolidWorks Modeling and simulation of a quadrotor through the integration of Simulink and Solidworks,” Maskay versión impresa ISSN 1390-6712 Maskay, pp. 1–17, 2019.

G. Dinardo, L. Fabbiano y G. Vacca, “Smart water grid : a smart methodology to detect leaks in,” Measurement, p. 107260, 2019.

A.S. Izwan-Ismail et al., “Experimental investigation of oil-water two-phase flow in horizontal pipes: Pressure losses, liquid holdup and flow patterns,” J. Pet. Sci. Eng., vol. 127, pp. 409–420, 2015.

L.D. Paolinelli, “A comprehensive model for stability of dispersed oil-water flow in horizontal and inclined pipes,” Chem. Eng. Sci., vol. 211, p. 115325, 2020.

F. Alimardani, H.A. Moghaddam, A. Sarmadian y M. Shafaee, “Pressure loss and performance assessment of horizontal spiral coil inserted pipes during forced convective evaporation of R-600a,” Int. J. Refrig., vol. 107, pp. 20–30, 2019.

W.T.M. Al-Tameemi y P. Ricco, “Water–air flow in straight pipes and across 90∘ sharp-angled mitre elbows,” Int. J. Multiph. Flow, vol. 118, pp. 113–127, 2019.

Z. Yuhong y H. Wenxin, “Application of artificial neural network to predict the friction factor of open channel flow,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 5, pp. 2373–2378, 2009.

G.I. Taylor, “Experiments with fluid friction in roughened pipes,” Proc. R. Soc. London. Ser. A - Math. Phys. Sci., vol. 161, no. 906, pp. 367–381, 1937.

D.D.E. Una, R.E.D. Neuronal y P. La, “Design of a neural network for the prediction of the coefficient of primary losses in utrbulent flow regime Jairo,” Ingenius. Rev. Cienc. y Tecnol. versión On-line ISSN 1390-860Xversión impresa ISSN 1390-650X Ingenius, no. 20, pp. 1–10, 2018.

L.P. Alan-Olivares, R. Guerra, M. Alfaro, E. Notte-Cuello, “Experimental evaluation of correlations used to calculate friction factor for turbulent flow in cylindrical pipes Alan,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 2019.

M.M. Shaikh, S. ur R. Massan y A.I. Wagan, “A sixteen decimal places’ accurate Darcy friction factor database using non-linear Colebrook’s equation with a million nodes: A way forward to the soft computing techniques,” Data Br., vol. 27, pp. 0–4, 2019.

G.G. Gómez, D.E.M. Carreazo y J.A.G. Camperos, “Desarrollo de instrumento virtual enfocado en la adquisición de datos para generar perfiles de temperatura en hornos,” Rev. Ingenio UFPSO, vol. 8, no. 1, pp. 47–58, 2015.

D.A. Quintero, H. Claro, F. Regino y J.A. Gómez, “Development of a data acquisition system using LabVIEW and Arduino microcontroller for a centrifugal pump test bench connected in series and parallel,” J. Phys. Conf. Ser., vol. 1257, p. 012002, 2019.

J. Garcia-Guarin, J. Gómez y D. Contrearas, “Experimental study of pumps in a pipe bench,” J. Phys. Conf. Ser., vol. 1257, p. 012003, 2019.

L. Molina-Espinosa, C.G. Aguilar-Madera, E.C. Herrera-Hernández y C. Verde, “Numerical modeling of pseudo-homogeneous fluid flow in a pipe with leaks,” Comput. Math. with Appl., vol. 74, no. 1, pp. 64–73, 2017.

E. Camperos, J. Ubarnes y F. Blanco, “Experimental Study for Detection of Leaks in Horizontal Pipelines,” vol. 11, no. 101, pp. 5017–5025, 2018.

L. Robert-Mott, Mecanica de fluidos, Sexta edic. 2006.

M. Duran-Pinzón, J. Páez-Arango y P.J. García-Guarín, P. J. (2018). Modelado numérico y análisis experimental para flujos en un medio poroso homogéneo a través de suelos. Iteckne, 15(1), 24-33.

Shukla, Harshit y Piratla, R. "Kalyan, Smart y Sustainable Leakage Monitoring for Water Pipeline Systems", (June 26, 2019). Abstract Proceedings of 2019 International Conference on Resource Sustainability - Cities (icRS Cities). Available at SSRN: https://ssrn.com/abstract=3410336or http://dx.doi.org/10.2139/ssrn.3410336.

Published

2020-05-01

How to Cite

[1]
J. A. . Gómez-Camperos, P. J. . García-Guarín, and C. . Nolasco-Serna, “Numeric leak detection model for pipe system”., AiBi Revista de Investigación, Administración e Ingeniería, vol. 8, no. 2, pp. 113–120, May 2020.

Issue

Section

Research Articles

Altmetrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)