Ray-Tracing Algorithm for Wireless Channel Modeling in Indoor Environments.

Authors

  • Yesica Beltrán-Gómez Universidad del Magdalena.
  • Luis Leonardo Camargo Universidad del Magdalena.
  • Rafael Linero-Ramos Universidad del Magdalena.
  • Jorge Gómez-Rojas Universidad del Magdalena.
  • Manuel Ricardo Pérez Pontificia Universidad Javeriana.

DOI:

https://doi.org/10.15649/2346030X.806

Keywords:

Ray Tracing, Channel modelling, cannel estimation, Indoor Wireless propagation.

Abstract

This work proposes a simulation algorithm for modelling a wireless channel in indoor environments, based on dimensional
‘image-based’ ray tracing method that considers the effects of channel dispersion. The algorithm implemented in Matlab, allows to simulate
scenarios of different dimensions and with different types of walls into a building. The proposed algorithm was validated with analytical models
and commercial software (Wireless Insite). To carry out the modelling, the dispersers, the dielectric characteristics of the materials, the frequency
and the distance, among others, are considered; The effects of reflection, refraction and diffraction phenomena are also included to increase the
accuracy of the prediction. The presented work proposes an algorithm to estimate the power received in a wireless channel for interiors that
seek to perform the channel estimation. A simulation of a real scenario is obtained with results that, according to the recommendation ITU-R
P.1238-7, are accurate, with an average relative error of 3.85% and a difference of less than 3 dB.

Author Biographies

Yesica Beltrán-Gómez, Universidad del Magdalena.

Universidad del Magdalena, Colombia

Luis Leonardo Camargo, Universidad del Magdalena.

Universidad del Magdalena, Colombia

Rafael Linero-Ramos, Universidad del Magdalena.

Universidad del Magdalena, Colombia

Jorge Gómez-Rojas, Universidad del Magdalena.

Universidad del Magdalena, Colombia

Manuel Ricardo Pérez, Pontificia Universidad Javeriana.

Pontificia Universidad Javeriana, Colombia

References

A. Navarro, D. Guevara y J. Gomez, “Modelado de canal inalámbrico empleando técnicas de trazado de rayos : Una revisión sistemática,” Sist. Telemática, vol. 12, no. 30, pp. 87–101, 2014.

A. Cavalcante y M. Sousa, “Computational parallelization strategy applied in full 3D ray-tracing wireless channel modeling,” Int. Microw. Optoelectron. Conf., 2005.

G.C. Montiel, “Aplicación Voip Para Dispositivos Móviles Sobre Redes Wifi Privadas,” Rev. Vínculos, vol. 8, no. 1, pp. 44–50, 2011.

H. Zhang, J. Guo, X. Xie, R. Bie y Y. Sun, “Environmental effect removal based structural health monitoring in the internet of things,” Proc. - 7th Int. Conf. Innov. Mob. Internet Serv. Ubiquitous Comput. IMIS 2013, pp. 512–517, 2013.

M. Zemede y K. Technologies, “Explosion of the Internet of Things : What does it mean for wireless devices ?,” no. June, 2015.

M. Batty et al., “Smart cities of the future,” Eur. Phys. J. Spec. Top., vol. 214, no. 1, pp. 481–518, Nov. 2012.

A. Sun, S. Rappaport, T.S. Thomas, y T. Ghosh, “A Preliminary 3D mmWave Indoor Office Channel Model,” in Computing, Networking and Communications (ICNC), 2015 International Conference on, 2015, pp. 26–31.

T. Kürner y A. Meier, “Prediction of outdoor and outdoor-to-indoor coverage in urban areas at 1.8 Ghz,” IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 496–506, 2002.

J. Gomez, D. Guevara y A. Navarro, "Estimación de canal MIMO en ondas milimétricas mediante motores de juegos y aceleración por hardware", Santa Marta D.T.C.H.: Unviersidad del Magdalena, 2018.

A. Navarro, D. Guevara y J. Gomez, “A Proposal to Improve Ray Launching Techniques,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 1, pp. 143–146, 2019.

Universidad de Sevilla, “CAPÍTULO 7: TÉCNICA DEL TRAZADO DE RAYOS,” pp. 163–196.

V. Degli-Esposti, “Ray Tracing Propagation Modelling : Future Prospects,” 8th Eur. Conf. Antennas Propag. (EuCAP 2014), no. EuCAP, pp. 2232–2232, 2014.

H. Bertoni, S. Torrico y G. Liang, “Predicting the radio channel beyond second-generation wireless systems,” Antennas Propag. …, vol. 47, no. 4, 2005.

V. Erceg, S.J. Fortune, J. Ling, A.J. Rustako y R.A. Valenzuela, “Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments,” IEEE J. Sel. Areas Commun., vol. 15, no. 4, pp. 677–684, 1997.

A.G. Kanatas, “A UTD Propagation Model in Urban Microcellular Environments,” IEEE Trans. Veh. Technol., vol. 46, no. 1, pp. 185–193, 1997.

K.H. Ng, E.K. Tameh, A. Doufexi, M. Hunukumbure y A.R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1019–1032, 2007.

A.M. Cavalcante, M.J. De-Sousa, J.C.W.A. Costa, C.R.L. Francês y G.P. Dos-Santos-Cavalcante, “A new computational parallel model applied in 3D ray-tracing techniques for radio-propagation prediction,” Asia-Pacific Microw. Conf. Proceedings, APMC, vol. 3, pp. 1859–1862, 2006.

T. Zhou, H. Sharif, M. Hempel, P. Mahasukhon, W. Wang y S. Ci, “A novel ray tracing based multipath modeling approach for site-specific WLAN simulations,” IEEE Int. Conf. Commun., 2009.

A. Navarro, D. Guevara y J. Gomez, “Prediction of delay spread using ray tracing and game engine based on measurement,” IEEE Veh. Technol. Conf., vol. 2015, pp. 1–5, 2015.

A. Goldsmith, "Wireless Communications", Cambridge University Press, 2005.

S.Y. Seidel, T.S. Rappaport, S. Jain, M.L. Lord y R. Singh, “Path Loss, Scattering, and Multipath Delay Statistics in Four European Cities for Digital Cellular and Microcellular Radiotelephone,” IEEE Trans. Veh. Technol., vol. 40, no. 4, pp. 721–730, 1991.

Published

2020-05-01

How to Cite

[1]
Y. . Beltrán-Gómez, L. . Leonardo Camargo, R. . Linero-Ramos, J. . Gómez-Rojas, and M. . Ricardo Pérez, “Ray-Tracing Algorithm for Wireless Channel Modeling in Indoor Environments”., AiBi Revista de Investigación, Administración e Ingeniería, vol. 8, no. 2, pp. 121–127, May 2020.

Issue

Section

Research Articles

Altmetrics

Downloads

Download data is not yet available.