Traffic accidents from the perspective of data mining A review of the literature.
DOI:
https://doi.org/10.15649/2346030X.743Keywords:
traffic accident, data mining, data sources, literature review.Abstract
We speak of a traffic accident (TA) as an unexpected event that occurs on the roads, conditioned by factors of human nature
(recklessness, carelessness, health problems) or also mechanical, involving at least one vehicle in motion that can be car, motorcycle or bicycle;
these events cause loss of life or injury. Figures from government agencies indicate that traffic accidents are the second cause of violent death
in Colombia, so this paper explores how, through data mining techniques, it is possible to analyze traffic accidents from another perspective,
proposing an initial research context. To this end, work was compiled from different databases such as ScienceDirect, IEEE, MCL, Scielo,
Redib and SpringerOpen, which were classified into three thematic areas. The results show that in an initial phase of TA research, descriptive
data mining models should be developed by linking different data sources.
References
Ministerio de Transporte, “Manual para el diligenciamiento del formato del informe policial de accidentes de tránsito adoptado según resolución 004040 del 28 de diciembre de 2004 modificada por la resolución 1814 del 13 de julio de 2005.” 2006, p. 4. [Online] Disponible en: http://web.mintransporte.gov.co/rnat/app/ayudas/Resolucion_0011268_2012.pdf
S. Kumar y D. Toshniwal, “Analysing road accident data using association rule mining,” in 2015 International Conference on Computing, Communication and Security (ICCCS), pp. 1–6, 2015.
World Health Organization, “Global status report on road safety 2018: summary” 2018. [Online] Disponible en: https://www.who.int/violence_injury_prevention/road_safety_status/2018/English-Summary-GSRRS2018.pdf?ua=1
OISEVI, “VII Informe Iberoamericano de Seguridad Vial” 2016, p. 22. [Online] Disponible en: https://www.oisevi.org/a/images/files/informes/info-7.pdf
División de Población de las Naciones Unidas, “Population Total” The World Bank Group, 2017. [Online]. Disponible en: https://data.worldbank.org/indicator/SP.POP.TOTL?name_desc=false.
Observatorio nacional de seguridad vial, “Cifras para Colombia Fallecidos y Lesionados en hechos de tránsito” 2018, pp. 2,6. [Online] Disponible en: http://ansv.gov.co/observatorio/public/documentos/boletin.pdf
Asociación Colombiana de vehículos automotores, “Andemos: Informe Sector Automotor Colombia febrero 2018, ¿recuperación a la vista?” 2018. [Online] Disponible en: http://www.andemos.org/index.php/2018/03/02/andemos-informe-sector-automotor-colombia-febrero-2018-recuperacion-a-la-vista/.
W. Hasperué, “Extracción de conocimiento en grandes bases de datos utilizando estrategias adaptativas”, Universidad Nacional de La Plata, 2012.
S. I. Kabeer, “Analysis of Road accident in Leeds”, in Leeds MSc Research Project Data Analytics, 2016.
E.A. Oviedo-Carrascal, A.I. Oviedo-Carrascal y G.L. Velez-Saldarriaga, “Minería multimedia: hacia la construcción de una metodología y una herramienta de analítica de datos no estructurados,” Rev. Ing. Univ. Medellín, vol. 16, no. 31, pp. 125–142, Dec. 2017.
E.J. Hernández-Leal, N.D. Duque-Méndezy J. Moreno-Cadavid, “Big Data: una exploración de investigaciones, tecnologías y casos de aplicación”, TecnoLógicas, vol. 20, no. 39, mayo -agosto, 2017.
J. Hernández-Orallo, M.J. Ramírez-Quintana y C. Ferri- Ramírez, Introducción a la minería de datos, 1st ed. Pearson Education, 2004.
J.E. Rodríguez-Rodríguez, "Fundamentos de mineria de datos. Universidad Distrital Francisco José de Caldas", 2010.
J. Hernández-Cáceres, “Clustering basado en el algoritmo K-means para la identificación de grupos de pacientes quirúrgicos,” in Congreso Académico UDI 2016, 2016.
S. Kumar y D. Toshniwal, “A data mining approach to characterize road accident locations” J. Mod. Transp., vol. 24, pp. 62–72, 2016.
G.R. Macías, N. Almeida-Filho y M. Alazraqui, “Análisis de las muertes por accidentes de tránsito en el municipio de Lanús, Argentina, 1998-2004,” Salud Colect., vol. 6, no. 3, p. 313, Dec. 2010.
R. Timaran-Pereira, A. Calderón-Romero y A. Hidalgo-Troya, “Aplicación de los árboles de decisión en la identificación de patrones de lesiones fatales por causa externa en el municipio de Pasto, Colombia,” Univ. y Salud, vol. 19, no. 3, p. 388, Dec. 2017.
M. Gupta, V. Kumar-Solanki y V. Kumar-Singh, “A Novel Framework to Use Association Rule Mining for classification of traffic accident severity,” Ing. Solidar., vol. 13, no. 21, pp. 37–44, Jan. 2017.
M. Hassinger-Rodríguez, M. Ramírez-Quintana y C. Ferri- Ramírez, “Aplicación de técnicas de minería de datos en accidentes de tráfico” p. 3, 2014.
T. Chen, C. Zhang y L. Xu, “Factor analysis of fatal road traffic crashes with massive casualties in China” Adv. Mech. Eng., vol. 8, p. 1, 6, 2016.
Y. Yanbin, Z. Lijuan, L. Mengjun y S. Ling, “Early Warning of Traffic Accident in Shanghai Based on Large Data Set Mining” 2016 Int. Conf. Intell. Transp. Big Data Smart City, p. 19, 2016.
L.Y. Chang, H.C. Chu, D.J. Lin y P. Lui, “Analysis of freeway accident frequency using multivariate adaptive regression splines” Procedia Eng, vol. 45, pp. 824–829, 2012.
R. Tian, Z. Yang y M. Zhang, “Method of Road Traffic Accidents Causes Analysis Based on Data Mining” in 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1,2. 2010.
J. Wang y Y. Ohsawa, “Evaluating model of traffic accident rate on urban data” in 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), p. 185, 2016.
S. Vasavi, “Extracting Hidden Patterns Within Road Accident Data Using Machine Learning Techniques” p. 14, 19. 2018.
S. Kumar y D. Toshniwal, “Severity analysis of powered two wheeler traffic accidents in Uttarakhand, India,” Eur. Transp. Res. Rev., vol. 9, no. 2, p. 24, jun. 2017.
H. Al-Najada y I. Mahgoub, “Big vehicular traffic Data mining: Towards accident and congestion prevention” in 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 256,257,260. 2016.
J. Abellán, G. López y J. De Oña, “Analysis of traffic accident severity using Decision Rules via Decision Trees” Expert Syst. Appl., p. 6047,6053,6054. 2013.
B. Dadashova, B.A. Ramírez, J.M. McWilliams y F.A. Izquierdo, “The Identification of Patterns of Interurban Road Accident Frequency and Severity Using Road Geometry and Traffic Indicators” Transp. Res. Procedia, vol. 14, pp. 4122,4123,4128. 2016.
A.V. Sakhare y P.S. Kasbe, “A review on road accident data analysis using data mining techniques,” in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–5.
H. Ghomi, L. Fu, M. Bagheri y L.F. Miranda-Moreno, “Identifying vehicle driver injury severity factors at highway-railway grade crossings using data mining algorithms” in 2017 4th International Conference on Transportation Information and Safety (ICTIS), p. 1054. 2017.
G. Kaur y E.H. Kaur, “Prediction of the cause of accident and accident prone location on roads using data mining techniques” 8th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT pp. 1, 4, 2017.
J.M. Manasa, S. Bhattacharjee, S.K. Ghosh y S. Mitra, “Spatial Decision Tree for Accident Data Analysis” 9th International Conference on Industrial and Information Systems (ICIIS). pp. 1,2. 2014.
L. Martín, L. Baena, L. Garach, G. López y J. de-Oña, “Using Data Mining Techniques to Road Safety Improvement in Spanish Roads” Procedia - Social and Behavioral Sciences, vol. 160. p. 607. 2014.
R. Timaran-Pereira, G. Hernandez y N. Quemá-Taimbud, “Identificación Georreferenciada de Patrones de Lesiones no Fatales con Técnicas de Aprendizaje no Supervisado,” in Proceedings of the 15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnership for Development and Engineering Education,” 2017.
S.Shanthi, D. Ramani, “Classification of Vehicle Collision Patterns in Road Accidents using Data Mining Algorithms” Int. J. Comput. Appl., vol. 35, p 30. 2011.
S. Kumar y D. Toshniwal, “A data mining framework to analyze road accident data” J. Big Data, vol. 2, pp. 6,7. 2015.
S. Kumar, D. Toshniwal y M. Parida, “A comparative analysis of heterogeneity in road accident data using data mining techniques” Evol. Syst., vol. 8, pp. 150,151. 2017.
S. Shanthi y R.G. Ramani, “Feature Relevance Analysis and Classification of Road Traffic Accident Data through Data Mining Techniques” Proc. World Congr. Eng. Comput. Sci, vol. 1, pp. 1,2. 2012.
Y.R. Shiau, C.H. Tsai, Y.H. Hung y Y.T. Kuo, “The Application of Data Mining Technology to Build a Forecasting Model for Classification of Road Traffic Accidents” Math. Probl. Eng., vol. 2015, pp. 1. 2015.
D. Chen, C. Xu y S. Ni, “Data mining on Chinese train accidents to derive associated rules” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 231, p. 5, 2015.
L. Li, S. Shrestha y G. Hu, “Analysis of road traffic fatal accidents using data mining techniques” IEEE 15th Int. Conf. Softw. Eng. Res. Manag. Appl., pp. 363,365. 2017.
L.J. Muhammad et al., “Using Decision Tree Data Mining Algorithm to Predict Causes of Road Traffic Accidents, its Prone Locations and Time along Kano – Wudil Highway” Int. J. Database Theory Appl., vol. 10, pp. 197,202. 2017.
Y. Castro y Y.J. Kim, “Data mining on road safety: Factor assessment on vehicle accidents using classification models” Int. J. Crashworthiness, vol. 21, pp. 1,2,3,7. 2016.
J. Xi, Z. Gao, S. Niu, T. Ding y G. Ning, “A hybrid algorithm of traffic accident data mining on cause analysis” Math. Probl. Eng., vol. 2013, p. 4. 2013.
R.G. Ramani y S. Shanthi, “Classifier prediction evaluation in modeling road traffic accident data” 2012 IEEE Int. Conf. Comput. Intell. Comput. Res., pp. 1–4, 2012.
A.T. Kashani, A. Shariat-Mohaymany y A. Ranjbari, “A Data Mining Approach To Identify Key Factors of Traffic Injury Severity” Prelim. Commun. Saf. Secur. Traffic, vol. 23, pp. 11,13,16. 2011.
A. Jain, G. Ahuja, Anuranjana y D. Mehrotra, “Data mining approach to analyse the road accidents in India” 5th International Conference on Reliability, Infocom Technologies and Optimization, ICRITO 2016: Trends and Future Directions, pp. 175,176. 2016.
B. Atnafu y G. Kaur, “Survey on analysis and prediction of road traffic accident severity levels using data mining techniques in Maharashtra, India” Int. J. Curr. Eng. Technol., vol. 7, pp. 1973–1978, 2017.
A. Castro, “Análisis de accidentes de tránsito en zonas urbanas y rurales usando minería de datos difusa” Pontificia Universidad Católica de Valparaíso, pp. 42,86. 2012.
A.M. Addi, A. Tarik y G. Fatima, “An approach based on association rules mining to improve road safety in Morocco” International Conference on Information. pp 1-6. 2016.
F. Babic y K. Zuskacova, “Descriptive and predictive mining on road accidents data” in IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 91. 2016.
A. Irfan, R. Al-Rasyid y S. Handayani, “Data mining applied for accident prediction model in Indonesia toll road,” in 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2017, 2018.
G. Gecchele, R. Rossi, M. Gastaldi y A. Caprini, “Data Mining methods for Traffic monitoring data analysis: A case study” Procedia - Soc. Behav. Sci., vol. 20, pp. 455,463. 2011.
T. Beshah y S. Hill, “Mining road traffic accident data to improve safety: Role of road-related factors on accident severity in Ethiopia” AAAI Spring Symp. - Tech. Rep., vol. SS-10-01, no. 1997, p. 14. 2010.
X.F. Zhang y L. Fan, “A Decision Tree Approach for Traffic Accident Analysis of Saskatchewan Highways” 26th IEEE Can. Conf. Electr. Comput. Eng., p. 2. 2013.
S. An, T. Zhang, X. Zhang y J. Wang, “Evolution of Traffic Flow Analysis under Accidents on Highways Using Temporal Data Mining” Intell. Syst. Des. Eng. Appl. (ISDEA), 2014 Fifth Int. Conf., pp. 454–457. 2014.
A. Pakgohar, R.S. Tabrizi, M. Khalili y A. Esmaeili, “The role of human factor in incidence and severity of road crashes based on the CART and LR regression: a data mining approach,” Procedia Comput. Sci., vol. 3, pp. 764–769, 2011.
S. Krishnaveni y M. Hemalatha, “A Perspective Analysis of Traffic Accident using Data Mining Techniques” Int. J. Comput. Appl., vol. 23, p. 40. 2011.
El tiempo, “Muertes en Colombia por accidentes de tránsito” 2018. [Online]. Disponible en: https://www.eltiempo.com/colombia/otras-ciudades/muertes-en-colombia-por-accidentes-de-transito-en-lo-que-va-del-2018-264096.
MinTransporte, “MinTransporte y ANSV anuncian estrategia para reducir siniestros viales en el país” 2018. [Online]. Disponible en: https://mintransporte.gov.co/Publicaciones/mintransporte_y_ansv_anuncian_estrategia_para_reducir_siniestros_viales_en_el_pais
E.A. Mohamed, “Predicting Causes of Traffic Road Accidents Using Multi-class Support Vector Machines” Journal of Communication and Computer 11(2014) 441-447 vol. 11, p. 441. 2014.
C. Montt, N. Rodríguez, A. Valencia, L. Barba y J. Rubio, “Regresión funcional para predecir lesionados en accidentes de tránsito de la región de Valparaíso” no. June 2014, p. 2. 2015.
A. Prasath y M. Punithavalli, “A Review on Road Accident Detection Using Data Mining Techniques,” Int. J. Adv. Res. Comput. Sci., vol. 9, no. 2, pp. 881–885, 2018.
P. Kasbe y A.V Sakhare, “A Review On Road Accident Data Analysis Using Data Mining Techniques,” Int. Conf. Innov. Inf. Embed. Commun. Syst. A, pp. 2–6, 2017.
M. Singh y A. Kaur, “A Review on Road Accident in Traffic System using Data Mining Techniques,” Int. J. Sci. Res., vol. 5, pp. 2319–7064, 2016.
R. Saravanya y M. Mangayarkarasi, “A Study and Analysis of Road Accident in Tamilnadu using Data mining Technique,” Int. J. Recent Eng. Sci., vol. 2, no. 2349–7157, 2015.
M. Gupta, V.K. Solanki y V.K. Singh, “Analysis of Datamining Technique for Traffic Accident Severity Problem: A Review,” Proc. Second Int. Conf. Res. Intell. Comput. Eng., vol. 10, no. June, pp. 197–199, 2017.
N. Divya, R. Preetam, A.M. Deepthishree y V.B. Lingamaiah, Analysis of Road Accidents Through Data Mining, vol. 500. Springer Singapore, 2019.
B. Atnafu y G. Kaur, “Survey on analysis and prediction of road traffic accident severity levels using data mining techniques in Maharashtra, India,” Int. J. Curr. Eng. Technol., vol. 7, no. 6, pp. 2277–4106, 2017.
Downloads
Published
How to Cite
Issue
Section
Altmetrics
Downloads
License
The journal offers open access under a Creative Commons Attibution License
This work is under license Creative Commons Attribution (CC BY 4.0).