Magnetic response of a superconductor immersed in a heat field.

Authors

DOI:

https://doi.org/10.15649/2346030X.674

Keywords:

Temperature gradient; Magnetization; Superconductivity.

Abstract

In this work we apply the time-dependent Ginzburg-Landau theory (TDGL) to calculate the magnetization M(H), the vortex configuration and the current density of mesoscopic samples in superconducting materials subjected to different linear temperature gradients. We solve the TDGL in a thin square film, immersed in a homogeneous external magnetic field H(t) applied perpendicular to its surface. We observe that the vortices enter at smaller magnetic fields when the sample temperature is higher. In turn, the vortexes always enter the surface
at a higher temperature.

Author Biographies

Omar Yamid Vargas-Ramírez, Universidad Distrital Francisco José de Caldas.

Universidad Distrital Francisco José de Caldas, Colombia

Oscar Silva-Mosquera, Universidad Distrital Francisco José de Caldas.

Universidad Distrital Francisco José de Caldas, Colombia

José José Barba-Ortega, Universidad Nacional de Colombia.

Universidad Nacional de Colombia, Colombia

References

M. Thinkham, “Introduction to Superconductivity”, 2nd ed. (McGraw-Hill, New York, 1996).

E. D. Valbuena, A. Diaz Lantanda, J. Barba-Ortega, Vortex “Matter in a Superconducting Square Under 2D Thermal Gradient”, J. Low Temp Phys 195, 202 2019.

L. Komendova, M.V. Miloševic, A.A. Shanenko y F.M. Peeters, “Different length scales for order parameters in two-gap superconductors: Extended Ginzburg-Landau theory”, Phys. Rev.B, 84, (2011) 064522.

R. Fazio, V.F. Gantmakher y Y. Imry “New Directions in Mesoscopic Physics”, edited by (SpringerVerlag, Berlin) 2003.

J. Barba-Ortega y M.R. Joya; “Superconductividad mesoscópica”; Revista Cientifica UPB, 5, (2011) 2.

Mesoscopic superconductivty in application. J. Barba-Ortega, J Bautista-Ruiz y E. Sardella, “Journal of Physics: Conference”, Series 1126 (1), (2018) 01, 2003.

J. Barba-Ortega, E. Sardella, J. Albino-Aguiar, “Superconducting boundary conditions for mesoscopic circular samples, Supercond”, Sci. Technol. 24, 015001, 2011.

C. Aguirre, M.R. Joya, J. Barba-Ortega, “Effect of anti-dots on the magnetic susceptibility in a superconducting long prisma”, J. Low Temp. Phys. 186, 250, 2017.

P.G. de Gennes, J. Matricon, “Collective modes of vortex lines in superconductors of the second kind”, Rev. Mod. Phys. 36, 45, 1964.

L. Komendová, A. Yajiang-Chen, A. Shanenko, M.V. Milošević y F.M. Peeter, “Two-band superconductors: Hidden criticality deep in the superconducting state”, Phys. Rev. Lett 108, 207002, 2012.

N.V. Orlova, A.A. Shanenko, M.V. Miloševic, F.M. Peeters, A.V. Vagov, V.M. Axt, y Ginzburg-Landau “theory for multiband superconductors: microscopic derivation”, Phys. Rev. B 87, 134510, 2013.

C.A. Aguirre, Q. Martins y J. Barba-Ortega, “Analytical development of Ginzburg-Landau equations for superconducting thin film in presence of currents”, Rev. UIS Ing. 18 (2), 213, 2019.

Q. Du, “Numerical approximations of the Ginzburg-Landau models for superconductivity”, J. Math. Phys. 46, 095109, 2005.

C.A. Aguirre, M.R. Joya y J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample”, Rev. UIS Ing. 19 (1), 109, 2020.

W.D. Gropp, H.G. Kaper, G.K. Leaf, D. M. Levine, M. Palumbo y V.M. “Vinokur, Numerical simulation of vortex dynamics in type-II superconductors”, J. Comput. Phys. Vol. 123 (1996) 254.

G.C. Buscaglia, C. Bolech y A. Lopez, “Connectivity and Superconductivity”, ed. J. Berger and J. Rubinstein (Heidelberg: Springer); New York, 2000.

J. Berger, “Time-dependent Ginzburg-Landau equations with charged boundaries”, J. Comput. Phys. 46, 095106, 2005.

M.V. Milosevic y R. Geurts, “The Ginzburg-Landau theory in applications”, Physica C. 470, 791, 2010.

Nanoscience y Engineering “in Superconductivity, eds V. V. Moshchalkov, R. Woerdenweber and W. Lang, Springer”, New York, 2010.

Handbook of Superconductivity, “eds. Charles Poole Jr., Academic Press”, New York, 2000.

Q. Du, M.D. Gunzburguer, J.S. Petersons, “Solving the Ginzburg Landau equations by finite element methods, Phys. Rev. B, 46 14 (1992) 9027.

Q. Du, M.D. Gunzburguer y J.S. Petersons, “Analysis and approximation of the Ginzburg Landau model for superconductivity”, Phys. Rev. B, 4 1 (1992) 54.

L. Peng , J. Lin, Y. Zhou, Y. Zhang, “Vortex States in Nanosized Superconducting Strips with Weak Links Under an External Magnetic Field,” J. Sup. Novel. Magn, 28 (2015) 3507.

P. Kuopanportti, N.V. Orlova y M.V. Milosevic, “Ground-state multiquantu vortices in rotating two-species superfluids”, Phys. Rev. A. 91 (2015) 043605.

D.S. Dantas, A.R.P. Lima, A. Chaves, C.A.S. Almeida, G.A. Farias, M.V. Milosevic, “Bound vortex states and exotic lattices in multicomponent Bose-Einstein condensates: The role of vortex-vortex interaction”, Phys. Rev. A, 91, 023630, 2015.

Published

2020-01-01

How to Cite

[1]
O. Y. . Vargas-Ramírez, O. . Silva-Mosquera, and J. J. . Barba-Ortega, “Magnetic response of a superconductor immersed in a heat field”., AiBi Revista de Investigación, Administración e Ingeniería, vol. 8, no. 1, pp. 86–90, Jan. 2020.

Issue

Section

Research Articles

Altmetrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)