Review of advanced process technologies for butanol production: an alternative biofuel.
DOI:
https://doi.org/10.15649/2346030X.639Keywords:
in situ recovery reactors, biomass valorization, ABE fermentation, biomass recycle, process intensificationAbstract
Butanol is an alternative biofuel to ethanol with higher energy efficiency and is less corrosive. The main advantage of the biological production of butanol is the ability to ferment both hexoses and pentoses, making it an attractive route for valorization of biomass residues. However, this fermentation in conventional processes has low productivity and product concentration, which means that both capital costs and energy requirements are high. Hence, this review analyzes the advantages and disadvantages of alternative technologies for the biological production of butanol. Between the possible technologies, we analyzed fermentation in stages using two different types of microorganisms, in situ product recovery and biomass recirculation. A single technology by itself is not capable of solving the low-performance indicators of the fermentation. Therefore, biological production will be great again with designs that integrates these technologies. Among the possible combinations to valorize lignocellulosic residues, integrated systems with vacuum evaporation or with extractive systems with solvents, with a previous lactic acid production and biomass recirculation, are interesting as yields are closed to the theoretical and the productivity can be increased more than twofold with low energy requirements (7-8 MJ / kg).
References
D.T. Jones y D.R. Woods, “Acetone-butanol fermentation revisited,” Microbiol. Rev., vol. 50, no. 4, pp. 484–524, Dec. 1986.
M. Karimi-Alavijeh y K. Karimi, “Biobutanol production from corn stover in the US,” Ind. Crops Prod., vol. 129, no. December 2018, pp. 641–653, Mar. 2019, doi: 10.1016/j.indcrop.2018.12.054.
Y. Ni y Z. Sun, “Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China,” Appl. Microbiol. Biotechnol, vol. 83, no. 3, pp. 415–423, Jun. 2009, doi: 10.1007/s00253-009-2003-y.
V.V Zverlov, O. Berezina, G.A. Velikodvorskaya, y W.H. Schwarz, “Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery”, Appl. Microbiol. Biotechnol, vol. 71, no. 5, pp. 587–97, Aug. 2006.
H. Blaschek y T. Ezeji, “Production of Acetone Acetone-Butanol Butanol-Ethanol (ABE) using distillers dried grains with solubles (DDGS): Pentose sugar utilization and impact of degradation products,” in GROWING THE BIOECONOMY: SCIENCE AND POLICY FOR NEXT GENERATION BIOREFINING, 2007.
T. Ezeji y H.P. Blaschek, “Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products bysolventogenic clostridia,” Bioresour. Technol., no. 99, pp. 5232–5242., 2008.
T. Ezeji, N. Qureshi, y H.P. Blaschek, “Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation,” Biotechnol. Bioeng, vol. 97, no. 6, pp. 1460–9, Aug. 2007, doi: 10.1002/bit.21373.
A.K.D.S. Abud y C.E.D.F. Silva, “Bioethanol in Brazil: Status, Challenges and Perspectives to Improve the Production,” Bioethanol Prod. from Food Crop., pp. 417–443, 2019, doi: 10.1016/B978-0-12-813766-6/00021-7.
J. Zheng, Y. Tashiro, Q. Wang, K. Sakai, y K. Sonomoto, “Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation,” Appl. Energy, vol. 140, pp. 113–119, Feb. 2015, doi: 10.1016/j.apenergy.2014.11.037.
J. Nolling et al., “Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum,” J. Bacteriol., vol. 183, no. 16, pp. 4823–4838, 2001.
M. Gottwald y G. Gottschalk, “The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation,” Arch. Microbiol, vol. 143, pp. 42–46, 1985.
D.R. Woods, “The genetic engineering of microbial solvent production,” Trends Biotechnol, vol. 13, pp. 259–264, 1995.
L.K. Bowles y W.L. Ellefson, “Effects of butanol on Clostridium acetobutylicum,” Appl. Environ. Microbiol, vol. 50, no. 5, pp. 1165–70, Nov. 1985.
E.J. Steen et al., “Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol.,” Microb. Cell Fact., vol. 7, p. 36, Jan. 2008, doi: 10.1186/1475-2859-7-36.
J. Winkler y K.C. Kao, “Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses,” PLoS One, vol. 6, no. 8, p. e21438, Aug. 2011, doi: 10.1371/journal.pone.0021438.
O.V Berezina, N.V Zakharova, A. Brandt, S.V Yarotsky, W.H. Schwarz, y V.V Zverlov, “Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis.,” Appl. Microbiol. Biotechnol, vol. 87, no. 2, pp. 635–46, Jun. 2010, doi: 10.1007/s00253-010-2480-z.
A. Baez, K.M. Cho, y J.C. Liao, “High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal,” Appl. Microbiol. Biotechnol, vol. 90, no. 5, pp. 1681–90, Jun. 2011, doi: 10.1007/s00253-011-3173-y.
C.R. Shen, E.I. Lan, Y. Dekishima, A. Baez, K.M. Cho y J.C. Liao, “Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.,” Appl. Environ. Microbiol, vol. 77, no. 9, pp. 2905–15, May 2011, doi: 10.1128/AEM.03034-10.
L.H. Reyes, M.P. Almario, y K.C. Kao, “Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli.,” PLoS One, vol. 6, no. 3, p. e17678, Jan. 2011, doi: 10.1371/journal.pone.0017678.
M. Inui, M. Suda, y S. Kimura, “Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli,” Appl. Microbiol., vol. 8052, pp. 1305–1316, 2008, doi: 10.1007/s00253-007-1257-5.
J. Winkler, M. Rehmann, y K.C. Kao, “Novel Escherichia coli hybrids with enhanced butanol tolerance”, Biotechnol. Lett., Mar. 2010, doi: 10.1007/s10529-010-0247-3.
S. Atsumi et al., “Metabolic engineering of Escherichia coli for 1-butanol production,” Metab. Eng., vol. 10, no. 6, pp. 305–11, Nov. 2008, doi: 10.1016/j.ymben.2007.08.003.
J. Rühl, A. Schmid, y L.M. Blank, “Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations.,” Appl. Environ. Microbiol, vol. 75, no. 13, pp. 4653–6, Jul. 2009, doi: 10.1128/AEM.00225-09.
D.R. Nielsen et al., “Engineering alternative butanol production platforms in heterologous bacteria,” Metab. Eng., vol. 11, no. 4–5, pp. 262–73, 2009, doi: 10.1016/j.ymben.2009.05.003.
N. Kataoka, T. Tajima, J. Kato, W. Rachadech y A.S. Vangnai, “Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host,” AMB Express, vol. 1, no. 1, p. 10, 2011, doi: 10.1186/2191-0855-1-10.
E.M. Green, “Fermentative production of butanol—the industrial perspective,” Curr. Opin. Biotechnol., vol. 22, no. 3, pp. 337–343, Jun. 2011, doi: 10.1016/j.copbio.2011.02.004.
Butamax, “California Biobutanol Multimedia Evaluation. http://www.arb.ca.gov/fuels/multimedia/020910biobutanoltierI.pdf,” 2010.
N. Qureshi, A. Lolas, y H.P. Blaschek, “Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101.,” J. Ind. Microbiol. Biotechnol, vol. 26, no. 5, pp. 290–295, 2001, doi: 10.1038/sj.jim.7000131.
N. Qureshi y H.P. Blaschek, “ABE production from corn: a recent economic evaluation,” J. Ind. Microbiol. Biotechnol, vol. 27, no. 5, pp. 292–7, Nov. 2001, doi: 10.1038/sj/jim/7000123.
N. Qureshi y H.P. Blaschek, “Evaluation of recent advances in butanol fermentation, upstream, and downstream processing,” Bioprocess Biosyst. Eng., vol. 24, no. 4, pp. 219–226, Nov. 2001.
P.A.M. Claassen, M.A.W. Budde, A.M. López-Contreras, Â.P. A.M. Claassen, y A.M. Lo, “Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone , butanol and ethanol,” vol. 54, pp. 162–167, 2000.
A.M. López-Contreras, P.A.M. Claassen, M.A.W. Budde, y A.M. López-Contreras, “Acetone , Butanol and Ethanol Production from Domestic Organic Waste by Solventogenic Clostridia,” J. Mol. Microbiol. Biotechnol., vol. 2, no. 1, pp. 39–44, 2000.
R. Koukiekolo, H. Cho, A. Kosugi, M. Inui, H. Yukawa, y R.H. Doi, “Degradation of Corn Fiber by Clostridium cellulovorans Cellulases and Hemicellulases and Contribution of Scaffolding Protein CbpA,” vol. 71, no. 7, pp. 3504–3511, 2005, doi: 10.1128/AEM.71.7.3504.
T. Ezeji, N. Qureshi, y H. Blaschek, “Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii,” Process Biochem., vol. 42, no. 1, pp. 34–39, Jan. 2007.
N. Qureshi, B.C. Saha, B. Dien, R.E. Hector, y M.A. Cotta, “Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate,” Biomass and Bioenergy, vol. 34, no. 4, pp. 559–565, Apr. 2010.
R. Marchal, M. Ropars, y J.P. Vandescasteele, “CONVERSION INTO ACETONE AND BUTANOL OF LIGNOCELLULOSIC SUBSTRATES PRETREATED BY STEAM EXPLOSION,” Biotechno!ogy Lett., vol. 8, no. 5, pp. 365–370, 1986.
C.E. Voget, C.F. Mignone, y R.J. Ertola, “Butanol production from apple pomance,” Biotechnol. Lett, vol. 7, pp. 43–46, 1985.
T.W. Jesse, T.C. Ezeji, N. Qureshi, y H.P. Blaschek, “Production of butanol from starch-based waste packing peanuts and agricultural waste,” J. Ind. Microbiol. Biotechnol., vol. 29, no. November 2001, pp. 117–123, 2002, doi: 10.1038/sj.jim.7000285.
N.A. Gutierrez, S. Maddoxt, K.C. Schuster, H. Swoboda, y J.R. Gapes, “Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using a substrate of potato,” Bioresour. Technol., vol. 66, no. 3, pp. 263–265, Dec. 1998.
J.C. Andrade y I. Vasconcelos, “Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilisation.,” Biotechnol. Lett., vol. 25, no. 2, pp. 121–5, Jan. 2003.
R. Marchal, D. Blanchet, y J.P. Vandecasteele, “Industrial optimization of acetone-butanol fermentation: a study of the utilization of Jerusalem artichokes,” Appl. Microbiol. Biotechnol., vol. 23, no. 2, pp. 92–98, Dec. 1985, doi: 10.1007/BF00938959.
R. Harun, M. Singh, G.M. Forde, y M.K. Danquah, “Bioprocess engineering of microalgae to produce a variety of consumer products,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 1037–1047, Apr. 2010.
J.P. Nakas, M. Schaedle, C.M. Parkinson, C.E. Coonley y S.W. Tanenbaum, “System development for linked-fermentation production of solvents from algal biomass.,” Appl. Environ. Microbiol., vol. 46, no. 5, pp. 1017–23, Nov. 1983.
C. Chen y H. Blaschek, “Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101,” Appl. Microbiol. Biotechnol., vol. 52, no. 2, pp. 170–3, Aug. 1999.
J. Formanek, R. Mackie, y H.P. Blaschek, “Enhanced Butanol Production by Clostridium beijerinckii BA101 Grown in Semidefined P2 Medium Containing 6 Percent Maltodextrin or Glucose.,” Appl. Environ. Microbiol., vol. 63, no. 6, pp. 2306–10, Jun. 1997.
C. Xue, X.-Q. Zhao, C.G. Liu, L.J. Chen, y F.W. Bai, “Prospective and development of butanol as an advanced biofuel.,” Biotechnol. Adv., vol. 31, no. 8, pp. 1575–84, Dec. 2013, doi: 10.1016/j.biotechadv.2013.08.004.
V.H. Grisales-Díaz, M.J. Willis, M. von-Stosch, G.O. Tost, y O. Prado-Rubio, “Assessing the energy requirements for butanol production using fermentation tanks-in-series operated under vacuum,” Renew. Energy, Jul. 2020, doi: 10.1016/j.renene.2020.07.039.
A.P. Mariano, T.C. Ezeji, y N. Qureshi, “Chapter 4. Butanol Production by Fermentation: Efficient Bioreactors,” in Commercializing Biobased Products : Opportunities, Challenges, Benefits, and Risks, no. 43, S. W. Snyder, Ed. Cambridge: Royal Society of Chemistry, 2015, pp. 48–70.
A.S. Afschar, H. Biebl, K. Schaller, K. Schiigerl, y K. Schrugerl, “Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle,” Appl Microbiol Biotechnol, vol. 22, no. 6, pp. 394–398, 1985.
X. Yang y G.T. Tsao, “Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption.,” Biotechnol. Bioeng., vol. 47, no. 4, pp. 444–50, Aug. 1995.
N. Qureshi, J. Schripsema, J. Lienhardt, y H.P. Blaschek, “Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick,” World J. Microbiol. Biotechnol., vol. 16, pp. 337–382, 2000.
Y. Tashiro, K. Takeda, G. Kobayashi, y K. Sonomoto, “High production of acetone-butanol-ethanol with high cell density culture by cell-recycling and bleeding,” J. Biotechnol., vol. 120, no. 2, pp. 197–206, 2005.
J. Lienhardt, J. Schripsema, N. Qureshi, y H.P. Blaschek, “Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor,” Appl. Biochem. Biotechnol., vol. 98, no. 1, pp. 591–598, 2002.
H. Bahl, W. Andersch, y G. Gottschalk, “Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat,” Eur. J. Appl. Microbiol. Biotechnol., vol. 15, no. 4, pp. 201–205, 1982.
J.A. Phillips y A.E. Humphrey, “Process technology for the biological conversion of lignocellulosic materials to fermentables and alcohols,” in In Wood and agricultural residues: research on use for feed, fuels and chemicals, Soltes, Ac., New York, 1983.
V.H. Grisales-Díaz y G. Olivar-Tost, “Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification,” Bioresour. Bioprocess., vol. 4, no. 1, p. 12, Dec. 2017, doi: 10.1186/s40643-017-0142-z.
N. Qureshi, M.M. Meagher, y R.W. Hutkins, “Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane,” J. Memb. Sci., vol. 158, no. 1–2, pp. 115–125, Jun. 1999, doi: 10.1016/S0376-7388(99)00010-1.
N. Qureshi y H. Blaschek, “Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation,” Appl. Biochem. Biotechnol., vol. 84, no. 4, pp. 225–235, 2000.
T.C. Ezeji, N. Qureshi, y H.P. Blaschek, “Production of butanol by Clostridium beijerinckii BA101 and in-situ recovery by gas stripping,” Microbiol. Biotechnol. World J, vol. 19, pp. 595–603., 2003.
T.C. Ezeji, N. Qureshi, y H.P. Blaschek, “Butanol fermentation research: Upstream and downstream manipulations,” Chem Rec, vol. 4, pp. 305–314, 2004.
T.C. Ezeji, N. Qureshi y H.P. Blaschek, “Acetone–butanol ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping,” Appl Microbiol Biotechnol, vol. 63, pp. 653–658., 2004.
G. Eckert, K. Schügerl, y K. Schiigerl, “Continuous acetone-butanol production with direct product removal,” Appl. Microbiol. Biotechnol., vol. 27, no. 3, pp. 221–228, Dec. 1987.
N. Qureshi y I. Maddox, “Reduction in Butanol Inhibition by Perstraction: Utilization of Concentrated Lactose/Whey Permeate by Clostridium acetobutylicum to Enhance Butanol Fermentation Economics,” Food Bioprod. Process., vol. 83, no. 1, pp. 43–52, Mar. 2005.
N. Qureshi, I.S. Maddox, y A. Friedl, “Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping, and pervaporation,” Biotechnol. Prog., vol. 8, no. 5, pp. 382–390, Sep. 1992.
P. Pierrot, M. Fick, y J. M. Engasser, “Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling,” Biotechnol. Lett., vol. 8, no. 4, pp. 253–256, Apr. 1986.
C. Frick, K. Schügerl, y K. Schiigerl, “Continuous acetone-butanol production with free and immobilized Clostridium acetobutylicum,” Appl. Microbiol. Biotechnol., vol. 25, no. 3, pp. 186–193, Dec. 1986.
C.H. Park, M.R. Okos, y P.C. Wankat, “Acetone-butanol-ethanol (ABE) fermentation and simultaneous separation in a trickle bed reactor,” Biotechnol. Prog., vol. 7, no. 2, pp. 185–194, Mar. 1991.
D.E. Ramey, “Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria,” 5753474, 1998.
W.C. Huang, D.E. Ramey y S. Yang, “Continuous production of butanol by clostridium acetobutylicum immobilized in a fibrous bed bioreactor,” Appl. Biochem. Biotechnol., vol. 115, pp. 887–898, 2004.
Y. Zhang, Y. Ma, F. Yang, y C. Zhang, “Continuous acetone-butanol-ethanol production by corn stalk immobilized cells.,” J. Ind. Microbiol. Biotechnol., vol. 36, no. 8, pp. 1117–1121, Aug. 2009.
S.I. Baba, Y. Tashiro, H. Shinto, y K. Sonomoto, “Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum.,” J. Biotechnol., pp. 4–11, Jun. 2011.
N. Qureshi y H.P. Blaschek, “Recovery of butanol from fermentation broth by gas stripping,” Biotechnol. Bioeng., vol. 22, pp. 557–564, 2001.
W. J. Groot, H.S. Soedjak, P.B. Donck, R.G.J.M. Lans, K.C.A.M. Luyben, y J.M.K. Timmer, “Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction,” Bioprocess Eng., vol. 5, no. 5, pp. 203–216, 1990.
A. Ishizaki, “Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564),” J. Biosci. Bioeng., vol. 87, no. 3, pp. 352–356, Jan. 1999.
G.A. Janke y W.D. Johnson, Jr., “Extractive fermentation using convoluted fibrous bed bioreactor,” 5563069, 1999.
S.R. Roffler, H.W. Blanch, y C.R. Wilke, “In-situ recovery of butanol during fermentation,” Bioprocess Eng., vol. 2, no. 4, pp. 181–190, 1987.
C. Job, C. Schertler, W.L. Staudenbauer, y E. Blass, “Selection of organic solvents for in situ extraction of fermentation products from Clostridium thermohydrosulfuricum cultures,” Biotechnol. Tech., vol. 3, no. 5, pp. 315–320, May 1989.
B.H. Davison y J.E. Thompson, “Continuous direct solvent extraction of butanol in a fermenting fluidized-bed bioreactor with immobilized Clostridium acetobutylicum,” Appl. Biochem. Biotechnol., vol. 39–40, no. 1, pp. 415–426, Sep. 1993.
S.H. Lee et al., “Ex situ product recovery for enhanced butanol production by Clostridium beijerinckii,” Bioprocess Biosyst. Eng., vol. 39, no. 5, pp. 695–702, 2016, doi: 10.1007/s00449-016-1550-8.
K. Kraemer, A. Harwardt, R. Bronneberg, y W. Marquardt, “Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process,” Comput. Chem. Eng., vol. 35, no. 5, pp. 949–963, May 2011, doi: 10.1016/j.compchemeng.2011.01.028.
T.C. Ezeji, N. Qureshi, P. Karcher, y H.P. Blaschek, “Production of Butanol from Corn,” in Alcoholic Fuels, 2006.
R. Shukla, W. Kang y K.K. Sirkar, “Toxicity of organic solvents toclostridium acetobutylicum for extractive ABE fermentation,” Appl. Biochem. Biotechnol., vol. 18, no. 1, pp. 315–324, 1988, doi: 10.1007/BF02930835.
A. Leo, C. Hansch, y D. Elkins, “Partition coefficients and their uses,” Chem. Rev., vol. 71, no. 6, pp. 525–616, Dec. 1971.
S.H. Ha, N.L. Mai, y Y.M. Koo, “Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction,” Process Biochem., vol. 45, no. 12, pp. 1899–1903, Dec. 2010.
L.D. Simoni, A. Chapeaux, J.F. Brennecke, y M.A. Stadtherr, “Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids,” Comput. Chem. Eng., vol. 34, no. 9, pp. 1406–1412, Feb. 2010, doi: 10.1016/j.compchemeng.2010.02.020.
H. González-Peñas, T. a. Lu-Chau, M.T. Moreira, y J.M. Lema, “Solvent screening methodology for in situ ABE extractive fermentation,” Appl. Microbiol. Biotechnol., vol. 98, no. 13, pp. 5915–5924, 2014, doi: 10.1007/s00253-014-5634-6.
D.R. Lide, Ed., CRC Handbook of Chemistry and Physics, CRC Press/. Boca Raton, 2008.
V.H. Grisales-Díaz y G. Olivar-Tost, “Economic optimization of in situ extraction of inhibitors in acetone-ethanol-butanol (ABE) fermentation from lignocellulose,” Process Biochem., vol. 70, pp. 1–8, Jul. 2018, doi: 10.1016/j.procbio.2018.04.014.
V. Outram, C.A. Lalander, J.G.M. Lee, E.T. Davis, y A.P. Harvey, “A comparison of the energy use of in situ product recovery techniques for the acetone butanol ethanol fermentation,” Bioresour. Technol., vol. 220, pp. 590–600, Nov. 2016, doi: 10.1016/j.biortech.2016.09.002.
N. Qureshi, S. Hughes, I.S. Maddox, y M.A. Cotta, “Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption,” Bioprocess Biosyst. Eng., vol. 27, no. 4, pp. 215–222, Jul. 2005, doi: 10.1007/s00449-005-0402-8.
M. Holtzapple, “Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite,” Sep. Technol., vol. 4, no. 4, pp. 213–229, Oct. 1994.
N.B. Milestone y D.M. Bibby, “Concentration of alcohols by adsorption on silicalite,” J. Chem. Technol. Biotechnol., vol. 31, no. 1, pp. 732–736, May 1981, doi: 10.1002/jctb.503310198.
A. Oudshoorn, L.A.M. van-der-Wielen, y A.J.J. Straathof, “Assessment of Options for Selective 1-Butanol Recovery from Aqueous Solution,” Ind. Eng. Chem. Res., vol. 48, no. 15, pp. 7325–7336, Aug. 2009, doi: 10.1021/ie900537w.
W.J. Groot y K.C.A.M. Luyben, “In situ product recovery by adsorption in the butanol / isopropanol batch fermentation,” Appl Microbiol Biotechnol, vol. 25, pp. 29–31, 1986.
K. Das, B. Soni, y T. Chose, “Static and column studies on selective adsorption-desorption of butanol.,” in Proceedings 4th European congress on biotechnol, 1987, pp. 1:76–78.
L. Nielsen, M. Larsson, O. Holst, y B. Mattiasson, “Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation,” Appl. Microbiol. Biotechnol., vol. 28, no. 4–5, pp. 335–339, Jun. 1988, doi: 10.1007/BF00268191.
X. Yang, G.J. Tsai, y G.T. Tsao, “Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum,” Sep. Technol., vol. 4, no. 2, pp. 81–92, Apr. 1994.
J.J. Kipling y D.B. Peakall, “Adsorption from binary liquid mixtures on silica and titania gels,” J. Chem. Soc., p. 4054, 1957.
M. Meagher, N. Qureshi, y R. Hutkins, “Silicalite membrane and method for the selective recovery and concentration of acetone and butanol from model ABE solutions and fermentation broth,” 5755967, 1998.
E. Favre, Q.T. Nguyen, S. Bruneau, y M.S. Loing, “Extraction of 1 -Butanol from Aqueous Solutions by Pervaporation,” vol. 65, pp. 221–228, 1996.
J. Huang y M.M.M. Meagher, “Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes,” J. Memb. Sci., vol. 192, no. 1–2, pp. 231–242, Oct. 2001.
W.J. Groot’, C.E. Qever, y N.W.F. Kossen, “Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation,” Biotechnol. Lett., vol. 6, no. 11, pp. 709–714, 1984, doi: 10.1007/BF00133061.
N. Qureshi, M.M. Meagher, J. Huangb, y R.W. Hutkins, “Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum,” J. Memb. Sci., vol. 187, no. 1–2, pp. 93–102, Jun. 2001.
C. Park, “Pervaporative butanol fermentation using a new bacterial strain,” Biotechnol. Bioprocess Eng., vol. 1, pp. 1–8, 1996.
P. Izák, K. Schwarz, W. Ruth, H. Bahl, y U. Kragl, “Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane.,” Appl. Microbiol. Biotechnol., vol. 78, no. 4, pp. 597–602, Mar. 2008.
N. Qureshi y H.P. Blaschek, “Butanol production from agricultural biomass,” in Food Biotechnology, Taylor & F., Boca Raton, 2005.
W.J. Groot, R.G.J.M. van-der-Lans y K.C.A.M. Luyben, “Technologies for butanol recovery integrated with fermentations,” Process Biochem., vol. 27, no. 2, pp. 61–75, Mar. 1992, doi: 10.1016/0032-9592(92)80012-R.
L.M. Vane, “A review of pervaporation for product recovery from biomass fermentation processes,” J. Chem. Technol. Biotechnol., vol. 80, no. 6, pp. 603–629, Jun. 2005.
V.H. Grisales Díaz y G. Olivar Tost, “Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation,” Bioresour. Technol., vol. 218, pp. 174–182, Oct. 2016, doi: 10.1016/j.biortech.2016.06.091.
J.P.C. Pereira et al., “Integrated Vacuum Stripping and Adsorption for the Efficient Recovery of (Biobased) 2-Butanol,” Ind. Eng. Chem. Res., vol. 58, no. 1, pp. 296–305, Jan. 2019, doi: 10.1021/acs.iecr.8b03043.
V.H. Grisales-Díaz, M. von-Stosch, y M.J. Willis, “Butanol production via vacuum fermentation: An economic evaluation of operating strategies,” Chem. Eng. Sci., vol. 195, pp. 707–719, Feb. 2019, doi: 10.1016/j.ces.2018.10.016.
A.P. Mariano, N. Qureshi, R. Maciel-Filho, y T.C. Ezeji, “Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation,” J. Chem. Technol. Biotechnol., vol. 87, no. 3, pp. 334–340, Mar. 2012, doi: 10.1002/jctb.2717.
D. Ramey, “Production of Butyric Acid and Butanol from Biomass”, Morgantown, WV, 2004.
G. Matta-el-Ammouri, R. Janati-Idrissi, a M. Junelles, H. Petitdemange, y R. Gay, “Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum.,” Biochimie, vol. 69, no. 2, pp. 109–15, Feb. 1987.
M. Oshiro, K. Hanada, Y. Tashiro, y K. Sonomoto, “Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum.,” Appl. Microbiol. Biotechnol., vol. 87, no. 3, pp. 1177–85, Jul. 2010.
P. Rogers, J. Chen, y M. J. O. Zidwick, The Prokaryotes. Springer New York, 2006.
Y. Zhu, Z. Wu, y S.T. Yang, “Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor,” Process Biochem., vol. 38, no. 5, pp. 657–666, Dec. 2002, doi: 10.1016/S0032-9592(02)00162-0.
J. Zigova y E.S, “Butyric acid production by Clostridium butyricum with integrated extraction and pertraction,” Biotechnol. Bioeng., vol. 34, pp. 835–843, 1999.
C. Zhang, H. Yang, F. Yang, y Y. Ma, “Current progress on butyric acid production by fermentation.,” Curr. Microbiol., vol. 59, no. 6, pp. 656–63, Dec. 2009.
L. Jiang, J. Wang, S. Liang, X. Wang, P. Cen y Z. Xu, “Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses,” Bioresour. Technol., vol. 100, no. 13, pp. 3403–3409, Jul. 2009, doi: 10.1016/j.biortech.2009.02.032.
Y. Zhu y S.-T. Yang, “Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum.,” J. Biotechnol., vol. 110, no. 2, pp. 143–57, May 2004, doi: 10.1016/j.jbiotec.2004.02.006.
J. Huang et al., “Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor.,” Bioresour. Technol., vol. 102, no. 4, pp. 3923–6, Mar. 2011.
K. Hofvendahl y B. Hahn-Hägerdal, “Factors affecting the fermentative lactic acid production from renewable resources(1).,” Enzyme Microb. Technol., vol. 26, no. 2–4, pp. 87–107, Feb. 2000.
C. Akerberg y G. Zacchi, “An economic evaluation of the fermentative production of lactic acid from wheat flour,” Bioresour. Technol., vol. 75, no. 2, pp. 119–126, Nov. 2000.
S.S. Patil, S.R. Kadam, K.B. Bastawde, J.M. Khire y D.V Gokhale, “Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365.,” Lett. Appl. Microbiol., vol. 43, no. 1, pp. 53–7, Jul. 2006.
Suskovic J.N.S.M..V. y M.S. “Lactic acid fermentation kinetics on different carbon sources,” Prehrambeno–Tehnol Biotehnol Rev, vol. 29, pp. 155–8, 1991.
B. Rivas, A.B. Moldes, J.M. Domínguez, y J.C. Parajó, “Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus.,” Int. J. Food Microbiol., vol. 97, no. 1, pp. 93–8, Dec. 2004.
G. Min-tian, M. Koide, R. Gotou, H. Takanashi, M. Hirata, y T. Hano, “Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus,” Process Biochem., vol. 40, no. 3–4, pp. 1033–1036, Mar. 2005.
Y. WEE, “Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis,” Enzyme Microb. Technol., vol. 35, no. 6–7, pp. 568–573, Dec. 2004.
H. Oh, Y.J. Wee, J.S. Yun, S. Ho-Han, S. Jung, y H.W. Ryu, “Lactic acid production from agricultural resources as cheap raw materials.,” Bioresour. Technol., vol. 96, no. 13, pp. 1492–8, Sep. 2005.
L. Serna-Cock y A.R. Stouvenel, “Produccion Biotecnologica De Acido Lactico: Estado Del Arte Biotechnological Production of Lactic Acid: State of the Art Produccion Biotecnoloxica De Acido Lactico: Estado Do Arte,” CyTA - J. Food, vol. 5, no. 1, pp. 54–65, Dec. 2005, doi: 10.1080/11358120509487672.
Downloads
Published
How to Cite
Issue
Section
Altmetrics
Downloads
License
The journal offers open access under a Creative Commons Attibution License
This work is under license Creative Commons Attribution (CC BY 4.0).