Design of a Resilient and Eco-friendly Microgrid for a Commercial Building

Authors

DOI:

https://doi.org/10.15649/2346030X.919

Keywords:

Environmental analysis, Homer Grid, Microgrid, PV battery, Resilience

Abstract

Recent natural disasters such as hurricanes Harvey and Maria have caused great disruption to the electric grid system. Additionally, government authorities have set ambitious goals to reduce greenhouse gas emissions. Thus, there is a growing interest in making the electric power systems more resilient while reducing their carbon footprint. In this work, a methodology to design a resilient and eco-friendly microgrid is presented. First, the input parameters of the model are defined; second, simulation of different microgrid configurations are performed in HOMER Grid software; third, the outputs of the model are analyzed; and finally, a microgrid configuration is selected based on economic, environmental, and resilience criteria. The considered microgrids consist of PV, battery, natural gas generator, and the electric load of an office building that consumes an average of 2 MWh per day. Different component sizes were used to determine the configuration with the lowest generator size to provide power during a two-day outage in the summer peak load. Environmental and economic analysis were performed to show the tradeoffs between different system design goals. The results indicate that installing a microgrid in an office building with a 600 kW PV array and 2.8 MWh lithium-ion battery can avoid the release of up to 287 tons of CO2 per year. The same microgrid configuration can endure a two-day blackout during the highest electric demand in the hurricane season without the need of a polluting backup generator. From this study, it was concluded that the optimal microgrid configuration depends on specific needs. Additionally, based on current technology costs, large PV systems with small batteries are economically more attractive than the base case configuration.

References

H. Aki, “Demand-Side Resiliency and Electricity Continuity: Experiences and Lessons Learned in Japan,” Proc. IEEE, vol. 105, no. 7, pp. 1443–1455, 2017.

D. Yates et al., “Stormy Weather. Assessing Climate Change Hazards to Electric Power Infrastructure: A Sandy Case Study,” IEEE Power & Energy Magazine, vol. 12, no. 5, pp. 66–75, 2014.

R. Kemp, “Electrical system resilience: A forensic analysis of the blackout in Lancaster, UK,” Proc. Inst. Civ. Eng. Forensic Eng., vol. 170, no. 2, pp. 100–109, 2017.

A. Kwasinski, F. Andrade, M. J. Castro-Sitiriche, and E. O’Neill-Carrillo, “Hurricane Maria Effects on Puerto Rico Electric Power Infrastructure,” IEEE Power Energy Technol. Syst. J., vol. 6, no. 1, pp. 85–94, 2019.

X. Pan, M. den Elzen, N. Höhne, F. Teng, and L. Wang, “Exploring fair and ambitious mitigation contributions under the Paris Agreement goals,” Environ. Sci. Policy, vol. 74, pp. 49–56, 2017.

Unites States Environmental Protection Agency, “Overview of Greenhouse Gases,” 2020. [Online]. Available: https://www.epa.gov/ghgemissions/overview-greenhouse-gases. [Accessed: 04-Sep-2020].

T. Simpkins, K. Anderson, D. Cutler, and D. Olis, “Optimal sizing of a solar-plus-storage system for utility bill savings and resiliency benefits,” in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2016, pp. 1–5“Optimal sizing of a solar-plus-storage system for utility bill savings and resiliency benefits,” in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN: IEEE, 2016, pp. 1–5.

K. Anderson, N. A. DiOrio, D. S. Cutler, and R. S. Butt, “Increasing Resiliency Through Renewable Energy Microgrids,” Int. J. Energy Sect. Manag., vol. 2, no. 2, pp. 1–16, 2017.

K. Anderson et al., “Quantifying and monetizing renewable energy resiliency,” Sustainability, vol. 10, no. 4, p. 933, 2018.

N. D. Laws, K. Anderson, N. A. DiOrio, X. Li, and J. McLaren, “Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings,” Renew. Energy, vol. 127, pp. 896–909, 2018.

A. Lagrange, M. de Simón-Martín, A. González-Martínez, S. Bracco, and E. Rosales-Asensio, “Sustainable microgrids with energy storage as a means to increase power resilience in critical facilities: An application to a hospital,” Int. J. Electr. Power Energy Syst., vol. 119, p. 105865, 2020.

E. Rosales-Asensio, M. de Simón-Martín, D. Borge-Diez, J. J. Blanes-Peiró, and A. Colmenar-Santos, “Microgrids with energy storage systems as a means to increase power resilience: An application to office buildings,” Energy, vol. 172, pp. 1005–1015, 2019.

J. Faraji, M. Babaei, N. Bayati, and M. A. Hejazi, “A comparative study between traditional backup generator systems and renewable energy based microgrids for power resilience enhancement of a local clinic,” Electronics, vol. 8, no. 12, p. 1485, 2019.

T. M. Azerefegn, R. Bhandari, and A. V. Ramayya, “Techno-economic analysis of grid-integrated PV/wind systems for electricity reliability enhancement in Ethiopian industrial park,” Sustain. Cities Soc., vol. 53, p. 101915, 2020.

C. Bastholm and F. Fiedler, “Techno-economic study of the impact of blackouts on the viability of connecting an off-grid PV-diesel hybrid system in Tanzania to the national power grid,” Energy Convers. Manag., vol. 171, pp. 647–658, 2018.

S. U. Rehman, S. Rehman, M. Shoaib, and I. A. Siddiqui, “Feasibility Study of a Grid-Tied Photovoltaic System for Household in Pakistan: Considering an Unreliable Electric Grid,” Environ. Prog. Sustain. Energy, vol. 38, no. 3, pp. 1–8, 2019.

A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. F. Mohammed, and M. A. M. Ramli, “Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq,” Energy, vol. 191, p. 116591, 2020.

F. Tooryan, A. Shadman, S. Kamalinia, and E. R. Collins, “Techno-Economic Analysis and Power Management for Remote Area Microgrid,” in Clemson University Power Systems Conference (PSC), 2020, pp. 1–6“Techno-Economic Analysis and Power Management for Remote Area Microgrid,” in Clemson University Power Systems Conference (PSC), Clemson, SC: IEEE, 2020, pp. 1–6.

R. Mehta, “A Microgrid Case Study for Ensuring Reliable Power for Commercial and Industrial Sites,” in IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 2019, pp. 594–598“A Microgrid Case Study for Ensuring Reliable Power for Commercial and Industrial Sites,” in IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand: IEEE, 2019, pp. 594–598.

D. T. Ton and M. A. Smith, “The U.S. Department of Energy’s Microgrid Initiative,” Electr. J., vol. 25, no. 8, pp. 84–94, 2012.

C. Schwaegerl and L. Tao, “What is a Microgrid?,” in Microgrids Architectures and Control, 1st ed., N. Hatziargyriou, Ed. Chichester, UK: John Wiley & Sons Ltd, 2014, pp. 1–24.

H. Farhangi, Smart Microgrids : Lessons from Campus Microgrid Design and Implementation, 1st ed. Taylor & Francis Group, 2016.

A. Faruqui and C. Bourbonnais, “The Tariffs of Tomorrow: Innovations in Rate Designs,” IEEE Power & Energy Magazine, vol. 18, no. 3, pp. 18–25, 2020.

R. Hledik, “Rediscovering Residential Demand Charges,” Electr. J., vol. 27, no. 7, pp. 82–96, 2014.

J. Shen, C. Jiang, Y. Liu, and J. Qian, “A Microgrid Energy Management System with Demand Response for Providing Grid Peak Shaving,” Electr. Power Components Syst., vol. 44, no. 8, pp. 843–852, 2016.

L. Zhou, Y. Zhang, X. Lin, C. Li, Z. Cai, and P. Yang, “Optimal sizing of PV and bess for a smart household considering different price mechanisms,” IEEE Access, vol. 6, pp. 41050–41059, 2018.

R. Garmabdari, M. Moghimi, F. Yang, E. Gray, and J. Lu, “Multi-objective energy storage capacity optimisation considering Microgrid generation uncertainties,” Int. J. Electr. Power Energy Syst., vol. 119, no. February, p. 105908, 2020.

A. Kadri and K. Raahemifar, “Optimal Sizing and Scheduling of Battery Storage System Incorporated with PV for Energy Arbitrage in Three Different Electricity Markets,” in IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–6“Optimal Sizing and Scheduling of Battery Storage System Incorporated with PV for Energy Arbitrage in Three Different Electricity Markets,” in IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada: IEEE, 2019, pp. 1–6.

M. H. Roos, D. A. M. Geldtmeijer, H. P. Nguyen, J. Morren, and J. G. Slootweg, “Optimizing the technical and economic value of energy storage systems in LV networks for DNO applications,” Sustain. Energy, Grids Networks, vol. 16, pp. 207–216, 2018.

W. L. Schram, I. Lampropoulos, and W. G. J. H. M. van Sark, “Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential,” Appl. Energy, vol. 223, pp. 69–81, 2018.

A. Mariaud, S. Acha, N. Ekins-Daukes, N. Shah, and C. N. Markides, “Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings,” Appl. Energy, vol. 199, pp. 466–478, 2017.

Y. Li and J. Wu, “Optimum Integration of Solar Energy With Battery Energy Storage Systems,” IEEE Trans. Eng. Manag., vol. (in press), 2020.

J. Liu, X. Chen, H. Yang, and Y. Li, “Energy storage and management system design optimization for a photovoltaic integrated low-energy building,” Energy, vol. 190, p. 116424, 2020.

A. Sharma and M. Kolhe, “Techno-economic evaluation of PV based institutional smart micro-grid under energy pricing dynamics,” J. Clean. Prod., vol. 264, p. 121486, 2020.

M. B. Roberts, A. Bruce, and I. MacGill, “Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings,” Appl. Energy, vol. 245, pp. 78–95, 2019.

A. A. Eras-Almeida, M. A. Egido-Aguilera, P. Blechinger, S. Berendes, E. Caamaño, and E. García-Alcalde, “Decarbonizing the Galapagos Islands: Techno-economic perspectives for the hybrid renewable mini-grid Baltra-Santa Cruz,” Sustainability, vol. 12, no. 6, p. 2282, 2020.

M. A. Mohamed, T. Chen, W. Su, and T. Jin, “Proactive Resilience of Power Systems against Natural Disasters: A Literature Review,” IEEE Access, vol. 7, pp. 163778–163795, 2019.

HOMER Energy by UL, “HOMER Grid. Intelligently Reduce Demand Charges with HOMER Grid,” 2020. [Online]. Available: https://www.homerenergy.com/products/grid/. [Accessed: 30-Jun-2020].

U. S. Energy Information Administration, “Average Price of Electricity to Ultimate Customers by End-Use Sector,” 2020. [Online]. Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a. [Accessed: 01-Sep-2020].

U. S. Energy Information Administration, “Delaware State Profile and Energy Estimates,” 2019. [Online]. Available: https://www.eia.gov/state/?sid=DE#tabs-4. [Accessed: 02-Sep-2020].

U. S. Energy Information Administration, “Delaware Electricity Profile 2018,” 2020. [Online]. Available: https://www.eia.gov/electricity/state/delaware/index.php. [Accessed: 31-Aug-2020].

M. Deru et al., “U.S. Department of Energy commercial reference building models of the national building stock,” Technical Report NREL/TP-5500-46861, 2011. [Online]. Available: https://www.nrel.gov/docs/fy11osti/46861.pdf.

Office of Energy Efficiency and Renewable Energy (EERE), “Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States,” 2013. [Online]. Available: https://openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states. [Accessed: 31-Aug-2020].

Folsom Labs, “HelioScope. The new standard in solar design software,” 2020. [Online]. Available: https://www.helioscope.com/. [Accessed: 30-Jun-2020].

HOMER Energy, “Modified Kinetic Battery Model,” 2017. [Online]. Available: https://www.homerenergy.com/products/grid/docs/1.7/modified_kinetic_battery_model.html. [Accessed: 31-Aug-2020].

L. Goldie-Scot, “A Behind the Scenes Take on Lithium-ion Battery Prices,” BloombergNEF, 2019. [Online]. Available: https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/. [Accessed: 19-Jun-2020].

W. Cole and A. W. Frazier, “Cost Projections for Utility-Scale Battery Storage Cost Projections for Utility- Scale Battery Storage,” 2019.

M. Woodhouse, B. Smith, A. Ramdas, and R. Margolis, “Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap,” 2019.

Lazard, “Lazard’s Levelized Cost of Storage Analysis,” 2018. [Online]. Available: https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf

Downloads

Published

2021-01-01

How to Cite

[1]
S. B. Sepúlveda-Mora and S. Hegedus, “Design of a Resilient and Eco-friendly Microgrid for a Commercial Building”, AiBi Revista de Investigación, Administración e Ingeniería, vol. 9, no. 1, pp. 8–18, Jan. 2021.

Issue

Section

Research Articles

Altmetrics

Downloads

Download data is not yet available.