Design of a particulate matter measurement system using an unmanned aerial vehicle

Authors

  • Jeison Eduardo Eslava-Pedraza Universidad Francisco de Paula Santander
  • Franyer Adrian Martínez-Sarmiento Universidad Francisco de Paula Santander
  • Ángelo Joseph Soto-Vergel Universidad Francisco de Paula Santander
  • Edwin Jose Vera-Rozo Universidad Francisco de Paula Santander
  • Dinael Guevara-Ibarra Universidad Francisco de Paula Santander

DOI:

https://doi.org/10.15649/2346030X.800

Keywords:

air quality, electronic design, instrumentation, particulate matter, unmanned aerial vehicle

Abstract

The World Health Organization considers air pollution as one of the priorities in human health; their studies point out there are risk with the concentration that today are observe in many developed countries. Thus, regulatory entities responsible for the environment surveillance, protection and prevention use air quality index measurement systems in form of permanent stations located in zones of interest, generating high investment cost because of the need of copy instrumentation systems in strategic locations for the data acquisition. Taking into consideration the aforementioned, an alternative solution presents to the proposed problem arranging an unmanned aerial vehicle as a shifting device and introducing an environmental variables measurement system affix to it, considering a peculiar characteristic, a kind of wing Zagi model adjusted to the peculiar and specific needs of its application. For such purpose, a methodology is executed in two phases: a design of a particulate matter measurement system focused in the characterization of the air quality index and instrumentation of an unmanned aerial vehicle with typical specifications of the application competent for the assemble of the measurements systems. As a result, it was achieving the design of the printed circuit for the particulate matter measurement system and developed an unmanned aerial vehicle detailing its building process considering the contours, sizes, lightweight material, technical requirements, autonomy and movement itself to guaranteed the resistance in the air in various conditions and assist the measurement system. This proposal of air quality index measurement will allow the instrumentation of a system to capture and storage data about the measured variables in real time associated with the air quality index.

References

L. Galmarini, “Presentacion de dos modelos de ley sobre regulación de Drones en nuestro pais,” 2015.

P. Jiménez, J. Hernández, and J. Silva, “Design of an unmanned aerial vehicle (UAV) for measuring greenhouse gases Diseño de un vehículo aéreo no tripulado (UAV) para medición de gases de efecto invernadero,” vol. 3, pp. 123–132, 2017, [Online]. Available: http://fundacioniai.org/actas.

J. D. Anderson, Aircraft performance and design, vol. 358, no. 207. 2012.

C. Cuerno-Rejado, L. García-Hernández, A. Sánchez-Carmona, A. Carrio, J. L. Sanchez-Lopez, and P. Campoy, “Evolución histórica de los vehículos aéreos no tripulados hasta la actualidad,” Dyna, vol. 91, no. 3, p. 332, 2016, doi: 10.6036/7781.

J. E. Márquez-Díaz, “Seguridad metropolitana mediante el uso coordinado de Drones,” Ing. USBMed, vol. 9, no. 1, p. 39, 2018, doi: 10.21500/20275846.3299.

N. J. Castro-Latorre, W. D. Coronado, and L. E. Pérez, “Diseño Estructural del fuselaje, ala central y unión ala-Fuselaje para la aeronave no tripulada (UAV) Skycruiser X-1,” 1998.

I. Rendon, A. Fernández-Manso, C. Quintano, and L. Calvo, “Diseño e implementación de un VANT (Vehículo Aéreo No-Tripulado, Unmanned Aerial Vehicule, UAV) multisensor para estudios post-incendio en entornos forestales,” Congr. For. español, no. 7, p. 12, 2017, [Online]. Available: http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218&lang=fa&tmpl=component.

J. A. Giraldo-Benjumea and C. M. Vélez-Sánche, “Estimación de parámetros de un UAV tipo ala volante mediante algoritmos metaheurísticos,” 2014.

C. C. Gonzáles-Regueral, F. Herranz, and C. P. Aguilar, “De los UAV a los RPAS,” perfilesIDS, p. 124, 2014.

S. de S. Aérea, “Evaluación del programa de control de peso y balance para operadores de transporte aereo regular y no regular ( aeronaves propulsadas por turbina de 10 sillas o mas ),” 2007.

S. Pinzón-Paz, “El perfil alar y su nomenclatura NACA,” Cienc. y Pod. Aéreo, vol. 8, no. 1, p. 26, 2013, doi: 10.18667/cienciaypoderaereo.4.

W. Gonzáles, “Diseño y construcción de un vehiculo aéreo no tripulado (UAV), del tipo drone cuadricoptero de carreras,” Institucion universitaria politécnico Grancolombiano, 2017.

P. L. Jimenez Soler and D. Agudelo, Metodología de diseño de aeronaves no tripuladas: Teoría y fundamentos. Editorial Académica Española, 2013.

E. Kaygan and A. Gatto, “Investigation of adaptable winglets for improved UAV control and performance,” Int. J. Aerosp. Mech. Eng., vol. 8, no. 7, pp. 1281–1286, 2014, [Online]. Available: https://waset.org/publications/9998884/investigation-of-adaptable-winglets-for-improved-uav-control-and-performance.

P. Jiménez, J. Hernández, and J. Silva, “Design of an unmanned aerial vehicle (UAV) for measuring greenhouse gases,” Actas Ing., vol. 3, pp. 123–132, 2017, [Online]. Available: http://fundacioniai.org/actas.

Asociación de Pilotos U-Control Argentinos Curso, “Curso básico de aeromodelismo.”

Vistronica SAS, “Vstronica SAS - Kits de electrónica y robótica educativa.” https://www.vistronica.com/ (accessed Nov. 15, 2019).

W. Ojeda-Bustamante, J. Flores-Velázquez, and R. E. Ontiveros-Capurata, “Uso y manejo de drones con aplicaciones al sector hídrico,” p. 425, 2016.

A. Barrientos, P. Cerro, R. Gutiérrez, A. San Martín, A. Martínez, y C. Rossi, “Vehículos aéreos no tripulados para uso civil. Tecnología y aplicaciones,” Univ. Politec. madrid, p. 29, 2007.

G. A. Addati y G. P. Lance, “Introducción a los UAVs, Drones o VANTs de uso Civil,” UCEMA, vol. 551, p. 11, 2014, [Online]. Available: http://hdl.handle.net/10419/130802.

I. García-García, “Estudio sobre vehículos aéreos no tripulados y sus aplicaciones,” 2017.

O. Cárdenas, Transductores para procesos industriales, 1st ed. Mérida: Universidad de los Andes, 2010.

M. Á. Muñoz, Nociones basicas de vuelo. 2012.

J. Zitnik, Manual Aerodinamica, vol. 3. 2003.

S. M. Berkowitz, “Airplane performance, stability and control,” J. Franklin Inst., vol. 249, no. 6, pp. 503–504, 1950, doi: 10.1016/0016-0032(50)90415-7.

W. Langewiesche and L. H. Collins, Stick and rudder : an explanation of the art of flying, 1st ed. ilustrada, reimpresa, 1972.

Aircraft Operations, “The benefits of winglets and performance enhancing kits,” Airl. Cost Conf., vol. 48, no. 109, p. 5, 2017.

“NASA - NASA Dryden Technology Facts - Winglets.”

D. Scholz, “Definition and discussion of the intrinsic efficiency of winglets,” INCAS Bull., vol. 10, no. 1, pp. 117–134, 2018, doi: 10.13111/2066-8201.2018.10.1.12.

T. Uzay, “Winglet design and analysis for low-altitude Ali Ihsan Gölcük * Dilek Funda Kurtulus,” vol. 3, no. 1, pp. 64–86, 2017.

J. Hidalgo, “Episodios De Contaminación Por Material Particulado En Curicó Y Su Relación Con Variables Meteorológicas,” 2016.

D. Villalba, E. Johanna, F. Ortiz, y H. Romero, “Relación entre el material particulado PM10 y variables meteorológicas en la ciudad de Bucaramanga - Colombia: Una aplicación del análisis de datos longitudinal,” XXVIII Simp. Int. Estadística, no. July, p. 6, 2018, [Online]. Available: https://www.researchgate.net/publication/329155299.

Mouser Electronics, “DHT11 - Humidity and Temperature Sensor,” 2011. [Online]. Available: https://www.mouser.com/ds/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf%0Ahttp://www.micropik.com/PDF/dht11.pdf%0Ahttp://robocraft.ru/files/datasheet/DHT11.pdf.

Sensirion, “Datasheet SHT21,” 2011. Accessed: 15-Nov-2019. [Online]. Available: www.sensirion.com.

Sensirion, “Datasheet SHT1X,” 2008. Accessed: 15-Nov-2019. [Online]. Available: www.sensirion.com.

T. Liu, “Digital-output relative humidity & temperature sensor/module DHT22 (DHT22 also named as AM2302) Capacitive-type humidity and temperature module/sensor.”

Beijing Hike IoT Technology Co, “HK-A5 Laser PM2.5/10 Sensor.”

Shenzhen, “HM-3300 / 3600 Dust Sensor,” 2018. [Online]. Available: http://wiki.seeedstudio.com/Grove-Laser_PM2.5_Sensor-HM3301/.

Adafruit learning system, “PM2.5 Air Quality Sensor,” 2019. Accessed: 15-Nov-2019. [Online]. Available: https://adafru.it/CiF.

Seed Grow the Difference, “Grove-Dust Sensor User Manual,” 2015.

publiclab, “DSM501A Dust sensor module,” 2004.

Published

2020-12-14

How to Cite

[1]
J. E. Eslava-Pedraza, F. A. . Martínez-Sarmiento, Ángelo J. Soto-Vergel, E. J. Vera-Rozo, and D. Guevara-Ibarra, “Design of a particulate matter measurement system using an unmanned aerial vehicle”, AiBi Revista de Investigación, Administración e Ingeniería, vol. 8, no. S1, pp. 1–15, Dec. 2020.

Issue

Section

Research Articles

Altmetrics

Downloads

Download data is not yet available.