Physical properties of perovskite-like structures: Synthesis and applications

Authors

  • Carlos Ramírez-Martín Universidad de Boyaca http://orcid.org/0000-0001-5920-0806
  • Diego Figueredo-Amaya Universidad de Boyacá
  • Jairo Mesa-Chaparro Universidad de Boyacá
  • Alejandra Maria Rios-Rojas Universidad de Boyacá

DOI:

https://doi.org/10.15649/2346030X.2474

Keywords:

perovskite, manganite, cobaltite, cuprates

Abstract

Perovskite-type materials have aroused great interest given the flexibility they have to accommodate elements of different ionic radii, allowing them to be stable. This has led to the study of specific families, named according to the cation with the lowest ionic radius in the structure, such is the case of materials based on cobalt (cobaltites), on manganese (manganites), on iron with bismuth (bismuth ferrites), in iridium (iridiatos). In the present work a brief description of the perovskite structure is made, in the same way the basic characteristics of some families that have been important for their contribution in the field of basic science and applications are detailed, within which the materials are mentioned. copper-based high critical temperature superconductors, and some important dry and wet synthesis methods are described. It is obtained that according to its constituent elements, the properties exhibited by each material are different and varied, and therefore, it is possible to find materials applied from sensors, to those applied in catalysis. Even when your answer is varied, from the structural point of view, all materials share the order of octahedra connected by vertices that enclose the largest cation

References

A, Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles”. Chemical Reviews, vol. 89, n°. 8, pp. 1861-1873, 1989. https://doi.org/10.1021/cr00098a010

Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara, “High conductivity in lithium lanthanum titanate”. Solid State Común, vol. 86, n° 1, pp. 689-693, 1993. https://doi.org/10.1016/0038-1098(93)90841-A

H. Fukuoka, T. Isami and S. Yamanaka, “Superconductivity of alkali metal intercalated niobate with a layered perovskite structure”. Chem. Lett., vol. 8, n° 1, pp. 703-704, 1997. https://doi.org/10.1246/cl.1997.703

Y. Moritomo, A. Asamitsu, H. Kuwahara and Y. Tokura, “Giant magnetoresistance of manganese oxides with a layered perovskite structure”. Nature, vol. 380, n° 1, pp. 141-144, 1996. https://doi.org/10.1038/380141a0

W. Schulze, J. Biggers and L. Cross, “Aging of dielectric dispersion in PLZT relaxor ceramics”. J. Am. Ceram. Soc., vol. 61, n° 1, pp. 46-9, 1996. https://doi.org/10.1111/j.1151-2916.1978.tb09227.x

H. Iwara, T. Yajima, T. Hibino, K. Ozaki and H. Suzuki, “Protonic conduction in calcium, strontium and barium zirconates”. Solid State Ionics, vol. 61, n°. 1-3, pp. 65-69, 1993. https://doi.org/10.1016/0167-2738(93)90335-Z

L. Torres, I. Juárez, X. García y A. Cruz, “Desarrollo de semiconductores con estructuras tipo perovskitas para purificar el agua mediante oxidaciones avanzadas”. Ciencia UANL, vol. 13, n°. 4, pp. 376-388, 2010.

H. Kato, H. Mikihiro, K. Ryoko, S. Yoshiki and K. Akihiko, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”. Chem. Lett., vol. 33, n°. 10, pp. 1348-1349, 2004. https://doi.org/10.1246/cl.2004.1348

A. Kudo, H. Kato and H. Kobayasi, “Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure”. J. Phys. Chem. B, vol. 106, n°. 48, pp. 12441-12447, 2002. https://doi.org/10.1021/jp025974n

A. Kudo, H. Kato and S. Nakagawa, “Water Splitting into H2 and O2 on New Sr2M2O7 (M=Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity”. J. Phys. Chem. B, vol. 104, n°. 3, pp. 571-575, 2000. https://doi.org/10.1021/jp9919056

A. Kudo, M. Yugo and K. Hideki, “Water Splitting into H2 and O2 over Ba5Nb4O15 Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method”. Chem. Lett., vol. 35, n°. 9, pp. 1052-1053, 2006. https://doi.org/10.1246/cl.2006.1052

L. Torres, L. Garza, M. Meza, A. Martínez and A. Cruz, "Photocatalytic Activity of Doped NaTaO3 and NaNbO3: (Y, La, Nd, Sm) Sol Gel on Degradation of Rhodamine B by UV Irradiation". Mater. Sci. Forum, vol. 544-545, n° 1, pp. 103-106, 2007. https://doi.org/10.4028/www.scientific.net/MSF.544-545.103 (15)

W. Lin, C. Cheng, C. Hu and H. Teng, “NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2”. Appl. Phys. Lett., vol. 89, n° 21, pp. 211904, 2006. https://doi.org/10.1063/1.2396930

H. Teng and C. Hu, “Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods”. Appl. Catal. A-Gen., vol. 331, n° 1, pp. 44-50, 2007. https://doi.org/10.1016/j.apcata.2007.07.024

Z. Zou, C. Yan, Z. Wang and Z. Li, “Photocatalytic activities for water splitting of La-doped-NaTaO3 fabricated by microwave synthesis”. Solid State Ionics, vol. 180, n° 32-35, pp. 1539-1542, 2009. https://doi.org/10.1016/j.ssi.2009.10.002

H. Cheng, X. Wang, G. Liu, Z. Chen, F. Li and G. Lu, “Synthesis and Photoelectrochemical Behavior of Nitrogen-doped NaTaO3”. Chem. Lett., vol. 38, n° 3, pp. 214-215, 2009. https://doi.org/10.1246/cl.2009.214

G. Chen, C. Zhou, Y. Li, H. Zhang and J. Pei, “Photocatalytic activities of Sr2Ta2O7 nanosheets synthesized by a hydrothermal method”. Int. J. Hydrogen Energ, vol. 34, n° 5, pp. 2113-2120, 2009. https://doi.org/10.1016/j.ijhydene.2008.12.074

A. Kudo, H. Kato and K. Asakura, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure”. J. Am. Chem. Soc., vol. 125, n° 10, pp. 3082-3089, 2003. https://doi.org/10.1021/ja027751g

K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor–solution interfaces”. J. Appl. Electrochem., vol. 37, n°. 7, pp. 765-787, 2007. https://doi.org/10.1007/s10800-007-9333-1

A. Fujishima, X. Zhanga and D. Trykbet, “Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup”. Int. J. Hydrogen Energ., vol. 32, n° 14, pp. 2664-2672, 2007. https://doi.org/10.1016/j.ijhydene.2006.09.009

R. Pérez, “A Structural Parameter for High Tc Superconductivity from an Octahedral Möbius Strip in RBaCuO: 123 type Perovskites”. Revista Mexicana de Física, vol. 48, n° 1, pp. 262-267, 2002.

J. Sunarso, S. Hashim, N. Zhu and W. Zhou, “Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review”. Progress in Energy and Combustion Science, vol. 61, pp. 57-77, 2017. https://doi.org/10.1016/j.pecs.2017.03.003

R. Hazen, “Perovskites”. Scientific American, vol. 258, n° 1, pp. 74-81, 1988.

N. Atta, A. Galal and E. El, “Perovskite Nanomaterials – Synthesis, Characterization, and Applications”. London: Intech, 2016.

P. Gao, M. Grätzela and M. Nazeeruddin, “Organohalide lead perovskites for photovoltaic applications”. Energy Environ. Sci, vol. 7, n° 8, pp. 2448-2463, 2014. https://doi.org/10.1039/C4EE00942H

E. Moore, “Solid State Chemistry. An Introduction”. London: Taylor & Francis Group, 2005.

P. Wagner, G. Wackers, L. Cardinaletti, J. Manca and J. Vanacken, “From colossal magnetoresistance to solar cells: An overview on 66 years of research into perovskites”. Physica Status Solidi A, vol. 214, n° 9, pp. 1700394, 2017. https://doi.org/10.1002/pssa.201700394

V. Goldschmidt, “Die Gesetze der Krystallochemie”. Die Naturwissenschaften, vol. 14, n°. 21, pp. 477-485, 1926. https://doi.org/10.1007/BF01507527

A. Barón, C. Frontera, J. García, J. Blasco, C. Ritterc, S. Valenciad, R. Feyerhermd and E. Dudzikd, “Exploration of magnetic order in Pr0.5Ca0.5CoO3- (=0) below the metal-insulator transition”. Physics Procedia, vol. 8, n° pp. 73-77, 2010. DOI: 10.1016/j.phpro.2010.10.014

A. Barón, J. García, J. Herrero and C. Frontera, “Ground State and the Metal-insulator Transition in (Pr1−yYy)1−xCaxCoO3, (0.45 ≤ x ≤ 0.55) Cobaltites”. Journal of the Korean Physical Society, vol. 63, n° 3, pp. 791-794, 2013. https://doi.org/10.3938/jkps.63.791

Y. Tokura and Y. Tomioka, “Colossal magnetoresistive manganites”. Journal of Magnetism and Magnetic Materials, vol. 200, n° 1-3, pp. 1-23, 1999. https://doi.org/10.1016/S0304-8853(99)00352-2

Ch. Renner, G. Aeppli, B. Kim, Y. Soh and S. Cheong, “Atomic-scale images of charge ordering in a mixedvalence manganite”. Nature, vol. 416, n° 1, pp. 518-521, 2002. https://doi.org/10.1038/416518a

Y. Moritomo, H. Kuwahara and Y. Tomioka, “Pressure effects on charge-ordering transitions in Perovskite manganites”. Physical Review B, vol. 55, n° 12, pp. 7549-7556, 1997. https://link.aps.org/doi/10.1103/PhysRevB.55.7549

C. Ling, J. Millburn, J. Mitchell, D. Argyriou, J. Linton and H. Bordallo, “Interplay of spin and orbital ordering in the layered colossal magnetoresistance manganite La2-2xSr1+2xMn2O7 (0.5https://doi.org/10.1103/PhysRevB.62.15096

Y. Murakami, H. Kawada, M. Tanaka, T. Arima, Y. Moritomo and Y. Tokura, “Direct Observation of Charge and Orbital Ordering in La0.5Sr1.5MnO4”. Physical Review Letters, vol. 80, n° 9, pp. 1932-1935, 1998. https://doi.org/10.1103/PhysRevLett.80.1932

T. Akimoto, Y. Maruyama, Y. Moritomo and A. Nakamura, “Antiferromagnetic metallic state in doped manganites”. Physical Review B, vol. 57, n° 10, pp. 5594-5597, 1998. https://doi.org/10.1103/PhysRevB.57.R5594

F. Ye, P. Dai, J. Fernandez, H. Sha, J. Lynn, H. Kawano, Y. Tomioka, Y. Tokura and J. Zhang, “Evolution of Spin-Wave Excitations in Ferromagnetic Metallic Manganites”. Physical Review Letters, vol. 96, n° 4, pp. 047204-047207, 2006. https://link.aps.org/doi/10.1103/PhysRevLett.96.047204

K. Yun, C. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar and K. Okuyama, “Nanoparticle filtration by electrospun polymer fibers”. Chem. Eng. Sci, vol. 62, n° 1, pp. 4751-4759, 2007. https://doi.org/10.1016/j.ces.2007.06.007

Z. Zeng, M. Greenblatt and M. Croft, “Large magnetoresistance in antiferromagnetic CaMnO3-”. Physical Review B, vol. 59, n° 3, pp. 8784-8788, 1999. https://doi.org/10.1103/PhysRevB.59.8784

K. Webber, M. Vögler, N. Khansur, B. Kaeswurm, J. Daniels and F. Schader, “Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications”. Smart Materials and Structures, vol. 26, no. 6, pp. 063001, 2017. https://doi.org/10.1088%2F1361-665x%2Faa590c

K. Rabe, C. Ahn and J. Triscone, “Physics of Ferroelectrics: A Modern Perspective”. Topics Applied Physics, vol. 105, pp. 1-30, 2007.

S. Dastidar, C. Hawley, A. Dillon, A. Gutierrez, J. Spanier and A. Fafarman, “Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide”. The Journal of Physical Chemistry Letters, vol. 8, no. 6, pp. 1278-1282, 2017. https://doi.org/10.1021/acs.jpclett.7b00134

G. Niu, X. Guo and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells”. Journal of Materials Chemistry A, vol. 3, pp. 8970-8980, 2015. https://doi.org/10.1039/C4TA04994B

R. Misra, B. Cohen, L. Iagher y L. Etgar, “Low-Dimensional Organic–Inorganic Halide Perovskite: Structure, Properties, and Applications”. Chemistry and Sustainability Energy and Materials, vol. 10, pp. 3712-3721, 2017. https://doi.org/10.1002/cssc.201701026

V. Adinolfi, W. Peng, G. Walters, O. Bakr and E. Sargent, “The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance”. Advanced Materials, vol. 30, n° 1, pp. 1700764, 2017. https://doi.org/10.1002/adma.201700764

M. Tinkham, “Introduction to superconductivity”, New York: McGraw-Hill, Inc, 1996.

W. Fu, H. Zandbergen, C. Van der Beek and L. de Jongh, “High-temperature superconductivity in LaBaCaCu3O6.85”. Physica C:uperconductivity, vol. 156, n° 1, pp. 133-136, 1988. https://doi.org/10.1016/0921-4534(88)90118-9

C. Parra, “Fluctuaciones en las propiedades magnéticas y de magnetotransporte de superconductores de alta temperatura crítica”, [Tesis Doctoral], Bogotá: Universidad Nacional de Colombia, 2010.

J. Skakle and A. West, “Superconducting La1.5−xBa1.5+x−yCayCu3Oz solid solutions I. Phase diagram, cation stoichiometry and Tc data”. Physica C: Superconductivity, vol. 220, n° 1-2, pp. 187-194, 1994. https://doi.org/10.1016/0921-4534(94)90900-8

C. Dong, J. Liang, G. Che, S. Xie, Z. Zhao, Q. Yang, Y. Ni and G. Liu, “Superconductivity and crystal structure in the La-Ba-Cu-0 system”. Physical Review B, vol. 37, n° 10, pp. 5182-5185, 1988. https://doi.org/10.1103/PhysRevB.37.5182

D. Goldschmidt, G. Reisner, Y. Direktovitch, A. Knizhnik, E. Gartstein, G. Kimmel and Y. Eckstein, “Tetragonal superconducting family (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy. The effect of cosubstitution on the transition temperature”. Physical Review B, vol. 48, n° 1, pp. 532-542, 1993. https://doi.org/10.1103/physrevb.48.532

S. Gurman, J. Amiss, S. Venkatesh, K. Kumari, R. Singhai and K. Garg, “A structural model for the CaLaBaCu307 superconductor from a detailed XAFS study”. Journal of Synchrotron Radiation, vol. 1, n° 6, pp. 761-763, 1999. https://doi.org/10.1107/S0909049599000266

L. Corredor, D. Landínez, J. Rojas and J. Aguiar, “Structural Properties of CaLaBaCu3O7 Single Crystals Grown by Self-Flux Method”. Brazilian Journal of Physics, vol. 33, n° 4, pp. 733-736, 2003. http://dx.doi.org/10.1590/S0103-97332003000400019

C. Parra, D. Landínez y J. Rojas, “Efectos de la Sustitución de Elementos de Tierra Raras en los Sitios de la del Superconductor LaBaCaCu3O7-δ.”, Revista Colombiana de Física, vol. 40, n° 1, pp. 29-31, 2008.

A. Knizhnik, G. Reisner, I. Direktovich, G. Shter, G. Grader and Y. Eckstein, “Equilibrium of 1:2:3 CLBLCO superconductors with oxygen: effect of cooling upon the oxygen content and the homogeneity of its distribution”, Journal of Physics and Chemistry of Solids, vol. 64, n° 1, pp. 273-280, 2003. https://doi.org/10.1016/S0022-3697(02)00294-9

C. Parra, Jr. Pimentel, P. Pureur, D. Landinez y J. Rojas, “Fluctuation Conductivity of La0.5RE0.5BaCaCu3O7− (RE= Y, Sm, Dy) Superconductor”. Journal of Superconductivity and Novel Magnetism, vol. 26, n° 1, pp. 2261-2264, 2013. https://doi.org/10.1007/s10948-012-1572-7

A. Sarmiento, J. Roa, D. Martínez, E. Vera, C. Parra and U. Fuentes, “An Approach of the Sintering YBa2Cu3O7−δ System”. Journal of Superconductivity and Novel Magnetism, vol. 26, n° 1, pp. 2247-2251, 2013. https://doi.org/10.1007/s10948-012-1445-0

D. Goldschmidt, A. Klehe, J. Schilling y Y. Eckstein, “Pressure dependence of Tc in cuprate superconductors: Application to (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy.”. Physical Review B, vol. 53, n° 21, pp. 14631-14636, 1996. https://doi.org/10.1103/physrevb.53.14631

J. Cepeda Grimaldos, M. Chiquillo, I. Supelano, D. Martínez, A. Sarmiento Santos and C. Parra, “Irreversibility Curve on Y1-xLuxBa2Cu3O7-δ (x=0.4, 0.5 and 0.6) superconducting”. Journal of Physics: Conference Series 480, pp. 012036, 2014. DOI: 10.1088/1742-6596/480/1/012036

C. Parra, D. Landínez and J. Roa, “Determining superconducting parameters from analysis of magnetization fluctuation for CaLaBaCu3O7-d superconductor”. Physica B, vol. 398, n° 1, pp. 301-304, 2007. https://doi.org/10.1016/j.physb.2007.04.032

D. Goldschmidt, A. Knizhnik, Y. Direktovitch, G. Reisner and Y. Eckstein, “Relationship between superconductor and metal-insulator transitions in a large class of tetragonal 1:2:3 cuprates Ca-R-Ba-Cu-0 (R =La, Nd)”. Physical Review B, vol. 52, n° 17, pp. 12982-12993, 1995. https://doi.org/10.1103/PhysRevB.52.12982

L. Pathak and S. Mishra, “A review on the synthesis of Y–Ba–Cu-oxide powder”. Superconductor Science and Technology, vol. 18, n° 9, pp. 67–89, 2005. https://doi.org/10.1088%2F0953-2048%2F18%2F9%2Fr01

R. Schwartz, “Chemical Solution Deposition of Perovskite Thin Films”. Chemistry of Materials, vol. 9, n° 11, pp. 2325-2340, 1997. https://doi.org/10.1021/cm970286f

R. Munir, A. Sheikh, M. Abdelsamie, H. Hu, L. Yu, K. Zhao, T. Kim, O. Tall, R. Li, D. Smilgies and A. Amassian, “Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases”. Advanced Materials, vol. 29, n° 1, pp. 1604113, 2017. https://doi.org/10.1002/adma.201604113

S. Specchia, G. Ercolino, S. Karimi, C. Italiano and A. Vita, “Solution Combustion Synthesis for Preparation of Structured Catalysts: A Mini-Review on Process Intensification for Energy Applications and Pollution Control”. International Journal of Self-Propagating High-Temperature Synthesis, vol. 26, n° pp. 166-186, 2017. https://doi.org/10.3103/S1061386217030062

A. Morales, J. Gómez, C. Parra and M. Brijaldo, “Synthesis and Characterization of LaBa2Cu3O7−δ System by Combustion Technique”. Journal of Superconductivity and Novel Magnetism, vol. 29, n° 1, pp. 1163-1171, 2016. https://doi.org/10.1007/s10948-015-3311-3

K. Kamata, T. Nakajima, T. Hayashi and T. Nakamura, “Nonstoichiometric behavior and phase stability of rare earth manganites at 1200°C:(1). LaMnO3”. Materials Research Bulletin, vol. 3, n° 1, pp. 49-54, 1978. https://doi.org/10.1016/0025-5408(78)90026-0

V. Gupta, B. Raina, S. Verma and K. Bamzai, “Study of Structural, Spectroscopic and Dielectric Properties of Multiferroic Cadmium Doped Samarium Manganite Synthesized by Solid State Reaction Method”. AIP Conference Proceedings, vol. 1953, n° 1, pp. 050010, 1978. https://doi.org/10.1063/1.5032665

S. Jin and J. Graebner, “Processing and Fabrication Techniques for Bulk High-Superconductors: A Critical Review”. Materials Science and Engineering B, vol. 7, n° 1, pp. 243-260, 1991. https://doi.org/10.1016/0921-5107(91)90001-C

R. Patrick and P. Shahid, “Thermal Plasma Processing of Materials: A Review”. Advanced Performance Materials, vol. 1, pp. 35-50, 1994. https://doi.org/10.1007/BF00705312

H. Zhu, Y. Lau and E. Pfender, “RF Plasma Synthesis of YBa2Cu307-x Powders”. Journal of Superconductivity, vol. 3, pp. 171-175, 1990.

J. Ortiz, C. Gomez, R. Lopez, I. Davalos and H. Pfeiffer, “Syntheis of advances ceramics by hydrohermal crystallization and modified related methods”. J. Adv. Ceram., vol. 1, n° 1, pp. 204-220, 2012. https://doi.org/10.1007/s40145-012-0022-0

D. Modeshia and R. Walton, “Solvothermal synthesis of perovskites and pyrochlores: Cristallisation of functional oxides under mild conditions”. Chem. Soc. Rev, vol. 39, n° 11, pp. 4303-4325, 2010. https://doi.org/10.1039/B904702F

R. Zanella, “Metodologias para la sintesis de nanoparticulas: controlando forma y tamaño”. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, vol. 5, n° 1, pp. 69-81, 2014. https://doi.org/10.22201/ceiich.24485691e.2012.1.45167

P. Kanhere and Z. Chen, “A review on visible light active perovskite-based photocatalysts”. Molecules, vol. 19, n° 12, pp. 19995-20022, 2014. https://doi.org/10.3390/molecules191219995

J. Lee, J. Park and Y. Shul, “Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550°C”. Nat. Commun., vol. 5, n° pp. 4045, 2014. https://doi.org/10.1038/ncomms5045

K. Garg han G. Bowlin, “Electrospinning jets and nanofibrous structures”. Biomicrofluidics, vol. 5, n° 1, pp. 13403, 2011. https://doi.ounrg/10.1063/1.3567097

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna and T. Matsuura, “Electrospun nanofibrous filtration membrane”. J. Membr. Sci, vol. 281, n° 1, pp. 581-586, 2006. https://doi.org/10.1016/j.memsci.2006.04.026

J. Venugopal and S. Ramakrishna, “Applications of polymer nanofibers in biomedicine and biotechnology”. Appl. Biochem. Biotechnol, vol. 125, n° 3, pp. 147-157, 2005. https://doi.org/10.1385/ABAB:125:3:147.

Published

2020-12-14

How to Cite

[1]
C. Ramírez-Martín, D. Figueredo-Amaya, J. Mesa-Chaparro, and A. M. Rios-Rojas, “Physical properties of perovskite-like structures: Synthesis and applications”, AiBi Revista de Investigación, Administración e Ingeniería, vol. 8, no. S1, pp. 307–314, Dec. 2020.

Issue

Section

Review Article

Altmetrics

Downloads

Download data is not yet available.