Panorama de las técnicas analíticas de detección y eliminación de iones de metales pesados en aguas residuales industriales

Autores/as

DOI:

https://doi.org/10.15649/2346030X.3324

Palabras clave:

aguas residuales industriales, metales pesados, análisis espectrofotométrico, métodos de eliminación, eficacia de la eliminación

Resumen

La eliminación de iones de metales pesados de las aguas residuales es de vital importancia para la limpieza del medio ambiente y la salud humana. Diversos procesos han abordado la eliminación de iones de metales pesados de diversas fuentes de aguas residuales. Estos procesos pueden dividirse en procesos de adsorción, de membrana, químicos, eléctricos y fotocatalíticos. En este artículo se ofrece una visión global y crítica de estos métodos, analizando los medios/absorbentes utilizados, la eficacia de la eliminación, las condiciones de funcionamiento y las ventajas e inconvenientes de cada método. También se resumen los principales resultados de estudios anteriores publicados en la literatura. Cabe señalar que la investigación reciente se ha centrado generalmente en las técnicas de adsorción. Los principales obstáculos del proceso de adsorción son la capacidad de eliminar simultáneamente distintos tipos de iones, el largo tiempo de retención del adsorbente y la estabilidad del ciclo. Aunque los procesos químicos y de membrana son prácticos, los altos niveles de formación de lodos y los requisitos de postratamiento son cuestiones clave que deben abordarse en los procesos químicos. La supresión de la suciedad y las incrustaciones puede mejorar aún más la separación por membrana. Sin embargo, el pretratamiento y la limpieza periódica de la membrana suponen costes adicionales. Los métodos eléctricos también han demostrado su eficacia. Sin embargo, además de superar el problema de la formación masiva de lodos, se requiere una separación a escala industrial. Los métodos eléctricos y fotocatalíticos aún no están maduros. En el futuro, la investigación deberá centrarse en el medio ambiente.

Referencias

Aldrich, C., and D. Feng. "Removal of heavy metals from wastewater effluents by biosorptive flotation". Minerals engineering 13.10-11 (2000): 1129-1138.

Alvarez, Maria Teresa, Carla Crespo, and Bo Mattiasson. "Precipitation of Zn(II), Cu(II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids". Chemosphere 66.9 (2007): 1677-1683.

Azabou, Samia, TaharMechichi, and Sami Sayadi. "Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source". Minerals Engineering 20.2 (2007): 173-178.

Azanaw, Aklilu, et al. "Textile effluent treatment methods and eco-friendly resolution of textile wastewater". Case Studies in Chemical and Environmental Engineering (2022): 100230.

Badawy, N. A., et al. "Chromatographic separations and recovery of lead ions from a synthetic binary mixtures of some heavy metal using cation exchange resin". Journal of hazardous materials 166.2-3 (2009): 1266-1271.

Blocher, C., et al. "Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater". Water Research 37.16 (2003): 4018-4026.

Blue, Lisa Y., et al. "Low-level mercury removal from groundwater using a synthetic chelating ligand". Water research 42.8-9 (2008): 2025-2028.

Carro, Leticia, et al". Interaction of heavy metals with Ca-pretreated Sargassummuticum algal biomass: Characterization as a cation exchange process". Chemical Engineering Journal 264 (2015): 181-187.

Chen, Quanyuan, et al. "Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide". Water research 43.10 (2009): 2605-2614.

Chowdhary, Pankaj, et al. "Role of industries in water scarcity and its adverse effects on environment and human health". Environmental concerns and sustainable development. Springer, Singapore, 2020. 235-256.

Chowdhary, Pankaj, et al. "Role of industries in water scarcity and its adverse effects on environment and human health". Environmental concerns and sustainable development. Springer, Singapore, 2020. 235-256.

Crini, Grégorio, and Eric Lichtfouse. "Advantages and disadvantages of techniques used for wastewater treatment". Environmental Chemistry Letters 17.1 (2019): 145-155.

Date, Manali, et al. "Zero liquid discharge technology for recovery, reuse, and reclamation of wastewater: A critical review". Journal of Water Process Engineering 49 (2022): 103129.

Dhaliwal, Salwinder Singh, et al. "Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review". Environmental Science and Pollution Research 27.2 (2020): 1319-1333.

Fu, Fenglian, et al. "Application of a novel strategy—Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater". Chemical Engineering Journal 189 (2012): 283-287.

Fu, Fenglian, et al. "Effective removal of coordinated Copper from wastewater using a new dithio carbamate-type supra molecular heavy metal precipitant". Chemosphere 69.11 (2007): 1783-1789.

Fu, Fenglian, Qi Wang, and Bing Tang. "Fenton and Fenton-like reaction followed by hydroxide precipitation in the removal of Ni (II) from Ni EDTA wastewater: a comparative study". Chemical Engineering Journal 155.3 (2009): 769-774.

Guo, Zhen-Ren, et al. "Enhanced Chromium recovery from tanning wastewater". Journal of Cleaner Production 14.1 (2006): 75-79.

Gyamfi, Ebenezer, Emmanuel Kwame Appiah-Adjei, and Kwaku Amaning Adjei. "Potential heavy metal pollution of soil and water resources from artisanal mining in Kokoteasua, Ghana". Groundwater for Sustainable Development 8 (2019): 450-456.

Jiang, Chun-yu, et al. "Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil". Chemosphere 72.2 (2008): 157-164.

Kumar, Sandeep, et al. "Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review". Environmental research 179 (2019): 108792.

Lee, I-Hsien, Yu-Chung Kuan, and Jia-Ming Chern. "Equilibrium and kinetics of heavy metal ion exchange". Journal of the Chinese Institute of Chemical Engineers 38.1 (2007): 71-84.

Maity, Sourav, Debopriya Sinha, and Angana Sarkar. "Wastewater and industrial effluent treatment by using nanotechnology". Nano materials and Environmental Biotechnology. Springer, Cham, 2020. 299-313.

Matlock, Matthew M., Brock S. Howerton, and David A. Atwood. "Chemical precipitation of heavy metals from acid mine drainage". Water research 36.19 (2002): 4757-4764.

Matlock, Matthew M., et al. "A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation". Journal of Hazardous Materials 82.1 (2001): 55-63.

Mauchauffée, Stephanie, and Eric Meux. "Use of Sodium decanoate for selective precipitation of metals contained in industrial wastewater". Chemosphere 69.5 (2007): 763-768.

Mirbagheri, S. Ahmad, and Seyed Nezamedin Hosseini. "Pilot plant investigation on petrochemical wastewater treatment for the removal of Copper and Chromium with the objective of reuse". Desalination 171.1 (2005): 85-93.

Mishra, Sandhya, et al. "Heavy metal contamination: an alarming threat to environment and human health". Environmental biotechnology: For sustainable future. Springer, Singapore, 2019. 103-125.

Muhammad, Said, and Kashif Ahmad. "Heavy metal contamination in water and fish of the Hunza River and its tributaries in Gilgit–Baltistan: evaluation of potential risks and provenance". Environmental technology & innovation 20 (2020): 101159.

Nigam, Adarsh, et al. "Development of semiconductor based heavy metal ion sensors for water analysis: A review". Sensors and Actuators A: Physical 330 (2021): 112879.

Oehmen, Adrian, et al. "Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor". Desalination 199.1-3 (2006): 405-407.

Pandiyan, Jeganathan, et al. "An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security". Saudi Journal of Biological Sciences 28.2 (2021): 1218-1225.

Polat, Hurriyet, and D. Erdogan. "Heavy metal removal from waste waters by ion flotation". Journal of Hazardous Materials 148.1-2 (2007): 267-273.

Rahman, Zeeshanur, and Ved Pal Singh. "The relative impact of toxic heavy metals (THMs)(arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview". Environmental monitoring and assessment 191.7 (2019): 1-21.

Salmani, Mohammad Hossein, et al. "Removal of Cadmium (II) from simulated wastewater by ion flotation technique". Iranian Journal of Environmental Health Science and Engineering 10.1 (2013): 1-5.

Sarode, Shruti, et al. "Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan". International journal of biological macromolecules 121 (2019): 1086-1100.

Shaidan, NurHamizah, UsamaEldemerdash, and SherineAwad. "Removal of Ni (II) ions from aqueous solutions using fixed-bed ion exchange column technique". Journal of the Taiwan Institute of Chemical Engineers 43.1 (2012): 40-45.

Shih, Yu-Jen, Chih-Ping Lin, and Yao-Hui Huang. "Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater". Separation and Purification Technology 104 (2013): 100-105.

Singh, Ajay. "A review of wastewater irrigation: Environmental implications". Resources, Conservation and Recycling 168 (2021): 105454.

Thakare, Yogeshwar N., and Arun Kumar Jana. "Performance of high density ion exchange resin (INDION225H) for removal of Cu (II) from waste water." Journal of Environmental Chemical Engineering 3.2 (2015): 1393-1398.

Yuan, X. Z., et al. "Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation". Colloids and Surfaces A: Physicochemical and Engineering Aspects 317.1-3 (2008): 256-261.

Zewail, T. M., and N. S. Yousef. "Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed". Alexandria Engineering Journal 54.1 (2015): 83-90.

Zuo, Wenchao, Yueqing Li, and Yuhong Wang. "Research on the optimization of new energy vehicle industry research and development subsidy about generic technology based on the three-way decisions". Journal of Cleaner Production 212 (2019): 46-55.

Vayampully Ajitha, Jordan Jun Chul Park et al. “Current physicochemical treatment technologies available for remediation of different types of heavy metals from wastewater”. New Trends in Removal of Heavy Metals from Industrial Wastewater- Book chapter 12 (2021): 301-322.

Publicado

01-01-2024

Cómo citar

[1]
A. Nadakuditi y V. Reddy-Vangala, «Panorama de las técnicas analíticas de detección y eliminación de iones de metales pesados en aguas residuales industriales», AiBi Revista de Investigación, Administración e Ingeniería, vol. 12, n.º 1, pp. 99–107, ene. 2024.

Número

Sección

Artículo de Revisión

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.