Modelos logísticos estocásticos: una revisión de la literatura
DOI:
https://doi.org/10.15649/2346030X.2470Palabras clave:
Estocasticos, Modelos de inventario, Localizacion, Instalaciones, Multieslabon, Modelos de ruteo estocasticoResumen
El presente artículo se realiza con el objetivo de establecer el estado del arte de los modelos de localización, inventario y ruteo con parámetros estocásticos. Se realizó una revisión sistemática de la literatura en las bases de datos ScienceDirect, ScholarGoogle, SpringerLink, Scopus, SemanticScholar, Scielo y ResearchGate. A través de preguntas orientadoras, se seleccionaron 99 artículos, de los cuales el 74% es literatura reciente entre 2015 y 2019. Se clasificaron los modelos individuales logísticos estocásticos, se propuso una taxonomía con un enfoque de investigación de operaciones, a partir de sus características, parámetros, restricciones, funciones objetivo y métodos de solución utilizados. Asimismo, se identificaron las tendencias y las futuras líneas de investigación. Como conclusión se identifican nuevas estrategias y políticas operativas que permiten mejorar el desempeño de la cadena de suministro, igualmente la ausencia de métodos de solución eficientes ha sido evidente en grandes instancias, según la vida real.
Referencias
A. Devin, S. Fayyaz, and R. Sadeghi, “Stochastic facilities location model by using Stochastic programming,” Shiraz J. Syst. Manag., vol. 1, pp. 59–71, 2013.
C. Boonmee, M. Arimura, and T. Asada, “Facility location optimization model for emergency humanitarian logistics,” Int. J. Disaster Risk Reduct., vol. 24, pp. 485–498, 2017. https://doi.org/10.1016/j.ijdrr.2017.01.017.
A. T. Gumus and A. F. Guneri, “Multi-echelon inventory management in supply chains with uncertain demand and lead times : literature review from an operational research perspective,” J. Eng. Manuf., vol. 221, pp. 1553–1570, 2007. https://doi.org/10.1243/09544054JEM889.
D. Simchi-levi and Y. Zhao, “Performance Evaluation of Stochastic Multi-Echelon Inventory Systems : A Survey,” Adv. Oper. Res., vol. 2012, pp. 1–33, 2012. https://doi.org/10.1155/2012/126254.
S. H. Owen and M. S. Daskin, “Strategic facility location: A review,” Eur. J. Oper. Res., vol. 111, no. 3, pp. 423–447, 1998. https://doi.org/10.1016/S0377-2217(98)00186-6.
M. T. Melo, S. Nickel, and F. Saldanha-da-Gama, “Facility location and supply chain management - A review,” Eur. J. Oper. Res., vol. 196, no. 2, pp. 401–412, 2009. https://doi.org/10.1016/j.ejor.2008.05.007.
L. B. Rocha-Medina, E. C. González-La Rota, and J. A. Orjuela-Castro, “Una revisión al estado del arte del problema de ruteo de vehículos : Evolución histórica y métodos de solución,” Ingeniería, vol. 16, no. 2, pp. 35–55, 2011.
E. C. Gonzalez -La Rotta, O. Gonzalez, and M. Becerra, “ESTADO DEL ARTE DEL PROBLEMA DE RUTEO DE VEHÍCULOS CON COMPONENTES ESTOCÁSTICOS THE,” Inventum, vol. 13, pp. 2–13, 2018. https://doi.org/10.26620/uniminuto.inven.
D. L. Rincón, J. E. Fonseca-Ramirez, and J. A. Orjuela-Castro, “Towards a common reference framework for traceability in the food supply chain,” Ingenieria, vol. 22, no. Xx, pp. 1–25, 2017. http://dx.doi.org/10.14483/udistrital.jour.reving.2017.2.a01.
M. E. Palmer-Gato, M. Cardos, E. Babiloni, and E. Guijarro, “Revisión de modelos de gestión de inventarios para repuestos reparables,” in 4th International Conference on Industrial Engineering and Industrial Management XIV Congreso de Ingeniería de Organización, 2010, pp. 1329–1335.
J. A. Orjuela-Castro, M. A. Cardona-Rojas, and L. V. Castañeda-López, “Agricultural Supply Chain Mango Inventory Model,” Rev. Ingeneria Ind., vol. 16, no. 2, pp. 141–150, 2017. https://doi.org/10.22320/s07179103/2017.09.
A. Keshari, N. Mishra, N. Shukla, S. Mcguire, and S. Khorana, “Multiple order-up-to policy for mitigating bullwhip effect in supply chain network,” Ann. Oper. Res., vol. 269, no. 1, pp. 361–386, 2018. https://doi.org/10.1007/s10479-017-2527-y.
J. P. Escorcia, R. Amaya Mier, and M. Soto-Ferrari, “Métricas desagregadas para la medición del impacto de una política de administración de inventario multi-eslabón,” in Eleventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI’2013), 2013, pp. 1–10.
S. M. Disney, A. Maltz, X. Wang, and R. D. H. Warburton, “Inventory Management for Stochastic Lead Times with Order Crossovers,” Eur. J. Oper. Res., vol. 248, pp. 473–486, 2016. https://doi.org/10.1016/j.ejor.2015.07.047.
X. Wang and S. M. Disney, “The bullwhip effect : Progress , trends and directions,” Eur. J. Oper. Res., vol. 250, pp. 691–701, 2016. https://doi.org/10.1016/j.ejor.2015.07.022.
N. Rodríguez-Cifuentes, J. Soriano, and J. Orjuela, “Consecuencias del Efecto Bullwhip al implementar la estrutura Vendor Managed Inventory,” in Tenth LACCEI Latin American and Caribbean Conference (LACCEI’2012), Megaprojects: Building Infrastructure by fostering engineering collaboration, efficient and effective integration and innovative planning, 2012, pp. 1–10.
A. J. Clark and H. Scarf, “Optimal Policies for a Multi-Echelon Inventory Problem,” Manage. Sci., vol. 6, no. 4, pp. 475–490, 1960. https://doi.org/10.1287/mnsc.6.4.475.
A. W. I. Federgruen and P. Zipkin, “Computational Issues in an Infinite-Horizon, Multiechelon Inventory Model,” Oper. Res., vol. 32, no. 4, pp. 818–836, 1984.
F. Chen, “OPTIMAL POLICIES FOR MULTI-ECHELON INVENTORY PROBLEMS WITH BATCH ORDERING,” Oper. Res., vol. 48, no. 3, pp. 376–389, 2000.
A. S. Eruguz, E. Sahin, Z. Jemai, and Y. Dallery, “A Comprehensive Survey of Guaranteed-Service Models for Multi- Echelon Inventory Optimization,” Intern. J. Prod. Econ., vol. 117, pp. 110–125, 2016. https://doi.org/10.1016/j.ijpe.2015.11.017.
T. De Kok et al., “A typology and literature review on stochastic multi-echelon inventory models,” Eur. J. Oper. Res., vol. 269, pp. 955–983, 2018. https://doi.org/10.1016/j.ejor.2018.02.047.
V. Gutierrez and C. J. Vidal, “Modelos de Gestión de Inventarios en Cadenas de Abastecimiento : Revisión de la Literatura Inventory Management Models in Supply Chains : A Literature Review,” Rev. Fac. Ing. Univ. Antioquia, vol. 43, pp. 134–149, 2008.
C. K. Gudum, “A new compound lead time demand distribution approach and comparison study,” Res. Pap. Copenhagen Bus. Sch. Denmark, pp. 1–30, 2003.
J. Riezebos, “Inventory order crossovers,” Int. J. Prod. Econ., vol. 104, pp. 666–675, 2006. https://doi.org/10.1016/j.ijpe.2004.11.011.
A. Srivastav and S. Agrawal, “Multi-objective optimization of mixture inventory system experiencing order crossover,” Ann. Oper. Res., pp. 1–18, 2018. https://doi.org/10.1007/s10479-017-2744-4.
Ç. Metin and S. Luo, “Stochastic inventory system with lead time flexibility : offered by a manufacturer / transporter,” J. Oper. Res. Soc., vol. 68, no. 12, pp. 1533–1552, 2017. https://doi.org/10.1057/s41274-016-0172-5.
A. Thorsen and T. Yao, “Robust inventory control under demand and lead time uncertainty,” Ann. Oper. Res., vol. 257, no. 1, pp. 207–236, 2017. https://doi.org/10.1007/s10479-015-2084-1.
R. F. Roldán, R. Basagoiti, and L. C. Coelho, “A survey on the inventory-routing problem with stochastic lead times and demands,” J. Appl. Log., vol. 24, pp. 15–24, 2017. 10.1016/j.jal.2016.11.010.
E. Yadollahi, E. H. Aghezzaf, J. Walraevens, B. Raa, and D. Claeys, “Evaluating approximate solution models for the stochastic periodic inventory routing problem,” J. Manuf. Syst., vol. 50, pp. 25–35, 2019. 10.1016/j.jmsy.2018.11.001.
C. Gonzalez-Quitian and J. Nirves-Pinzon, “Solucion del problema de optimizacion de inventario de dos escalones con demanda estocastica para una red de distribucion de un solo producto,” 2018.
E. A. Silver, D. F. Pyke, and D. J. Thomas, Inventory and Production Management in Supply Chains. Fourth Edition. | Boca Raton : Taylor & Francis, 2017. | Revised: CRC Press, 2016. 10.1201/9781315374406.
F. Chen, A. Federgruen, and Y.-S. Zheng, “Coordination Mechanisms for a Distribution System with One Supplier and Multiple Retailers,” Manage. Sci., vol. 47, no. 5, pp. 693–708, May 2001. https://doi.org/10.1287/mnsc.47.5.693.10484.
V. Gaur and M. L. Fisher, “A Periodic Inventory Routing Problem at a Supermarket Chain,” Oper. Res., vol. 52, no. 6, pp. 813–822, Dec. 2004. https://doi.org/10.1287/opre.1040.0150.
X. Zheng, M. Yin, and Y. Zhang, “Integrated optimization of location, inventory and routing in supply chain network design,” Transp. Res. Part B Methodol., vol. 121, pp. 1–20, 2019. 10.1016/j.trb.2019.01.003.
A. G. Zare, H. Abouee-mehrizi, and O. Berman, “Exact Analysis of the ( R , Q ) Inventory Policy in a Two-Echelon Production-Inventory System,” Oper. Res. Lett., vol. 45, no. 4, pp. 308–314, 2017. https://doi.org/10.1016/j.orl.2017.04.011.
Y. Rong, Z. Atan, and L. V Snyder, “Heuristics for Base-Stock Levels in Multi-Echelon,” Prod. Oper. Manag., vol. 26, no. 9, pp. 1760–1777, 2017. https://doi.org/10.1111/poms.12717.
T. Aouam and K. Kumar, “On the effect of overtime and subcontracting on supply chain safety stocks,” Omega, vol. 89, pp. 1–20, 2018. https://doi.org/10.1016/j.omega.2018.09.010.
N. De Smet, E. Aghezzaf, and B. Desmet, “Optimising installation ( R , Q ) policies in distribution networks with stochastic lead times : a comparative analysis of guaranteed- and stochastic service models,” Int. J. Prod. Res., pp. 1–18, 2018. https://doi.org/10.1080/00207543.2018.1518606.
N. Sakulsom and W. Tharmmaphornphilas, “Periodic-Review Policy for a 2-Echelon Inventory Problem with Seasonal Demand,” Eng. J., vol. 22, no. 6, pp. 117–134, 2018. https://doi.org/10.4186/ej.2018.22.6.117.
N. Sakulsom and W. Tharmmaphornphilas, “Heuristics for a periodic-review policy in a two-echelon inventory problem with seasonal demand,” Comput. Ind. Eng., vol. 133, pp. 292–302, 2019. https://doi.org/10.1016/j.cie.2019.05.017.
C. Cheng and L. Tang, “Robust policies for a multi-stage production / inventory problem with switching costs and uncertain demand,” Int. J. Prod. Res., vol. 7543, pp. 1–19, 2018. https://doi.org/10.1080/00207543.2017.1413257.
H. Zhu, Y. F. Chen, M. Hu, and Y. Yang, “A Simple Heuristic Policy for Stochastic Distribution Inventory Systems with Fixed Costs,” Rotman Sch. Manag. Work. Pap., no. 2921743, pp. 1–45, 2019.
A. Gharaei, H. S. R. Pasandideh, and S. T. Akhavan, “An optimal integrated lot sizing policy of inventory in a bi-objective multi-level supply chain with stochastic constraints and imperfect products,” J. Ind. Prod. Eng., vol. 35, pp. 6–20, 2017. https://doi.org/10.1080/21681015.2017.1374308.
O. Stenius, J. Marklund, and S. Axs, “Sustainable Multi-echelon Inventory Control with Shipment Consolidation and Volume Dependent Freight Costs,” Eur. J. Oper. Res., vol. 267, pp. 904–916, 2017. https://doi.org/10.1016/j.ejor.2017.12.029.
L. Li, S. Song, C. Wu, and K. You, “Ordering Control in Multi-Stage Multi-Item Supply Chain with Stochastic Demand,” in 13th IEEE International Conference on Control & Automation (ICCA), 2017, pp. 707–712.
Y. Bo, M. Dawande, G. Janakiraman, and S. T. Mccormick, “On Integral Policies in Deterministic and Stochastic Distribution Systems,” Oper. Res., vol. 65, pp. 703–711, 2017.
A. Angelus and W. Zhu, “Looking Upstream : Optimal Policies for a Class of Capacitated Multi-Stage Inventory Systems,” Prod. Oper. Manag., vol. 26, no. 11, pp. 2071-2088., 2017. https://doi.org/10.1111/poms.12742.
B. K. Mawandiya, J. K. Jha, and J. J. Thakkar, “Optimal production ‑ inventory policy for closed ‑ loop supply chain with remanufacturing under random demand and return,” Oper. Res., pp. 1–42, 2018. https://doi.org/10.1007/s12351-018-0398-x.
R. E. King, W. Wangwatcharakul, and D. Warsing Jr., “Computing Base-stock Levels for a Two-Stage Supply Chain with Uncertain Supply,” Omega, vol. 89, pp. 92–109, 2018. https://doi.org/10.1016/j.omega.2018.10.001.
L. Johansson, D. R. Sonntag, J. Marklund, and G. P. Kiesmüller, “Controlling distribution inventory systems with shipment consolidation and compound Poisson demand,” Eur. J. Oper. Res., vol. 280, no. 1, pp. 90–101, 2019. https://doi.org/10.1016/j.ejor.2019.06.045.
S. Ebrahimi, S.-M. Hosseini-Motlagh, and M. Nematollahi, “Proposing a delay in payment contract for coordinating a two-echelon periodic review supply chain with stochastic promotional effort dependent demand,” Int. J. Mach. Learn. Cybern., vol. 10, no. 5, pp. 1037–1050, 2019. https://doi.org/10.1007/s13042-017-0781-6.
D. Das, N. Baran, and V. Jain, “Optimization of stochastic , ( Q , R ) inventory system in multi ‑ product , multi ‑ echelon , distributive supply chain,” J. Revenue Pricing Manag., vol. 18, no. 5, pp. 405–418, 2019. https://doi.org/10.1057/s41272-019-00204-7.
J. A. Orjuela-Castro, L. A. Sanabria-Coronado, and A. M. Peralta-Lozano, “Coupling facility location models in the supply chain of perishable fruits,” Res. Transp. Bus. Manag., vol. 24, no. August, pp. 73–80, 2017. https://doi.org/10.1016/j.rtbm.2017.08.002.
N. Gülpinar, D. Pachamanova, and E. Çanakoglu, “Robust strategies for facility location under uncertainty,” Eur. J. Oper. Res., vol. 225, no. 1, pp. 21–35, 2013. https://doi.org/10.1016/j.ejor.2012.08.004.
L. A. Sanabria-Coronado, A. M. Peralta-Lozano, and J. A. Orjuela, “Facility Location Models in Perishable Agri-Food Chains: a Review,” Ingeniería, vol. 22, no. 1, p. 65, 2017. https://doi.org/10.14483/udistrital.jour.reving.2017.1.a04.
M. Bieniek, “A note on the facility location problem with stochastic demands,” Omega, vol. 55, pp. 53–60, 2015. https://doi.org/10.1016/j.omega.2015.02.006.
S. Karabay, E. Köse, M. Kabak, and E. Ozceylan, “Mathematical Model and Stochastic Multi-Criteria Acceptability Analysis for Facility Location Problem,” PROMET - Traffic&Transportation, vol. 28, no. 3, pp. 245–256, 2016. https://doi.org/10.7307/ptt.v28i3.1843.
C. Toregas, R. Swain, C. ReVelle, and L. Bergman, “The Location of Emergency Service Facilities,” Oper. Res., vol. 19, no. 6, pp. 1363–1373, Oct. 1971. https://doi.org/10.1287/opre.19.6.1363.
F. Louveaux, “Discrete stochastic location models,” Ann. Oper. Res., vol. 6, pp. 21–34, 1986.
L. V. Snyder, M. S. Daskin, and C. P. Teo, “The stochastic location model with risk pooling,” Eur. J. Oper. Res., vol. 179, no. 3, pp. 1221–1238, 2007. https://doi.org/10.1016/j.ejor.2005.03.076.
C. K. Y. Lin, “Stochastic single-source capacitated facility location model with service level requirements,” Int. J. Prod. Econ., vol. 117, no. 2, pp. 439–451, 2009. https://doi.org/10.1016/j.ijpe.2008.11.009.
N. Ghaffari-Nasab, M. S. Jabalameli, M. B. Aryanezhad, and A. Makui, “Modeling and solving the bi-objective capacitated location-routing problem with probabilistic travel times,” Int. J. Adv. Manuf. Technol., vol. 67, no. 9–12, pp. 2007–2019, 2013. https://doi.org/10.1007/s00170-012-4627-9.
M. Albareda-Sambola, A. Alonso-Ayuso, L. F. Escudero, E. Fernández, and C. Pizarro, “Fix-and-Relax-Coordination for a multi-period location-allocation problem under uncertainty,” Comput. Oper. Res., vol. 40, no. 12, pp. 2878–2892, 2013. https://doi.org/10.1016/j.cor.2013.07.004.
T. Ahmadi, H. Karimi, H. Davoudpour, and S. A. Hosseinijou, “A robust decision-making approach for p-hub median location problems based on two-stage stochastic programming and mean-variance theory: a real case study,” Int. J. Adv. Manuf. Technol., vol. 77, no. 9–12, pp. 1943–1953, 2015. https://doi.org/10.1007/s00170-014-6569-x.
M. Alizadeh, N. Mahdavi-Amiri, and S. Shiripour, “Modeling and solving a capacitated stochastic location-allocation problem using sub-sources,” Soft Comput., vol. 20, no. 6, pp. 2261–2280, 2016. https://doi.org/10.1007/s00500-015-1640-6.
A. Adibi and J. Razmi, “2-Stage stochastic programming approach for hub location problem under uncertainty: A case study of air network of Iran,” J. Air Transp. Manag., vol. 47, pp. 172–178, 2015. https://doi.org/10.1016/j.jairtraman.2015.06.001.
I. Correia and F. Saldanha, “Facility Location Under Uncertainty,” in Location Science, 2015, pp. 177–203. https://doi.org/10.1007/978-3-319-13111-5.
L. P. Melo, F. K. Miyazawa, L. L. C. Pedrosa, and R. C. S. Schouery, “Approximation algorithms for k-level stochastic facility location problems,” J. Comb. Optim., vol. 34, no. 1, pp. 266–278, 2017. https://doi.org/10.1007/s10878-016-0064-2.
M. Golabi, S. M. Shavarani, and G. Izbirak, “An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake,” Nat. Hazards, vol. 87, no. 3, pp. 1545–1565, 2017. https://doi.org/10.1007/s11069-017-2832-4.
S. Shiripour and N. Mahdavi-Amiri, “Bi-objective location problem with balanced allocation of customers and Bernoulli demands: two solution approaches,” Soft Comput., pp. 1–20, 2018. https://doi.org/10.1007/s00500-018-3163-4.
L. F. Escudero, M. A. Garín, C. Pizarro, and A. Unzueta, “On efficient matheuristic algorithms for multi-period stochastic facility location-assignment problems,” Comput. Optim. Appl., vol. 70, no. 3, pp. 865–888, 2018. https://doi.org/10.1007/s10589-018-9995-0.
A. Marín, L. I. Martínez-Merino, A. M. Rodríguez-Chía, and F. Saldanha-da-Gama, “Multi-period stochastic covering location problems: Modeling framework and solution approach,” Eur. J. Oper. Res., vol. 268, no. 2, pp. 432–449, 2018. https://doi.org/10.1016/j.ejor.2018.01.040.
J. A. Orjuela-Castro, J. P. Orejuela-Cabrera, and W. Adarme-Jaimes, “Last mile logistics in mega-cities for perishable fruits,” J. Ind. Eng. Manag., vol. 12, no. 2, pp. 318–327, 2019. https://doi.org/10.3926/jiem.2770.
J. Oyola, H. Arntzen, and D. L. Woodruff, “The stochastic vehicle routing problem, a literature review, part I: models,” EURO J. Transp. Logist., vol. 7, no. 3, pp. 193–221, 2018. https://doi.org/10.1007/s13676-016-0100-5.
W. R. Stewart and B. L. Golden, “Stochastic vehicle routing: A comprehensive approach,” Eur. J. Oper. Res., vol. 14, no. 4, pp. 371–385, 1983. https://doi.org/10.1016/0377-2217(83)90237-0.
U. Ritzinger, J. Puchinger, and R. F. Hartl, “A survey on dynamic and stochastic vehicle routing problems,” Int. J. Prod. Res., vol. 54, no. 1, pp. 215–231, 2016. https://doi.org/10.1080/00207543.2015.1043403.
M. Noorizadegan and B. Chen, “Vehicle routing with probabilistic capacity constraints,” Eur. J. Oper. Res., vol. 270, no. 2, pp. 544–555, 2018. https://doi.org/10.1016/j.ejor.2018.04.010.
L. Chen, W. C. Chiang, R. Russell, J. Chen, and D. Sun, “The Probabilistic Vehicle Routing Problem with Service Guarantees,” Transp. Res. Part E Logist. Transp. Rev., vol. 111, no. February, pp. 149–164, 2018. https://doi.org/10.1016/j.tre.2018.01.012.
Y. Zhang, R. Baldacci, M. Sim, and J. Tang, “Routing optimization with time windows under uncertainty,” Math. Program., vol. 175, no. 1–2, pp. 263–305, 2019. https://doi.org/10.1007/s10107-018-1243-y.
G. Laporte, F. Louveaux, and H. Mercure, “The Vehicle Routing Problem with Stochastic Travel Times,” Front. Artif. Intell. Appl., vol. 26, no. 3, pp. 161–170, 1992.
F. Errico, G. Desaulniers, M. Gendreau, W. Rei, and L. M. Rousseau, “The vehicle routing problem with hard time windows and stochastic service times,” EURO J. Transp. Logist., vol. 7, no. 3, pp. 223–251, 2018. https://doi.org/10.1007/s13676-016-0101-4.
P. Jaillet, “Probabilistic Traveling Salesman Problems,” Massachusetts Institute of Technology, 1985.
P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo, “Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers,” Comput. Optim. Appl., vol. 61, no. 2, pp. 463–487, 2015. https://doi.org/10.1007/s10589-014-9719-z.
P. Jaillet, “A-Priori solution of a traveling salesman problem in which a random subset of the customers are visited,” Oper. Res., vol. 36, no. 6, pp. 929–936, 1988. https://doi.org/10.1287/opre.36.6.929.
N. A. Gelves-tello, R. Mora Moreno, and H. Lamos, “Solución del problema de ruteo de vehículos con demandas estocásticas mediante la optimización por espiral,” Fac. Ing., vol. 25, no. 42, pp. 7–19, 2016.
T. Dinh, R. Fukasawa, and J. Luedtke, Exact algorithms for the chance-constrained vehicle routing problem, vol. 172, no. 1–2. Springer Berlin Heidelberg, 2018. https://doi.org/10.1007/s10107-017-1151-6.
B. Yao, C. McLean, and H. Yang, “Robust optimization of dynamic route planning in same-day delivery networks with one-time observation of new demand,” Networks, vol. 73, no. 4, pp. 434–452, 2019. https://doi.org/10.1002/net.21890.
A. Gutierrez, L. Dieulle, N. Labadie, and N. Velasco, “A multi-population algorithm to solve the VRP with stochastic service and travel times,” Comput. Ind. Eng., vol. 125, pp. 144–156, 2018. https://doi.org/10.1016/j.cie.2018.07.042.
D. R. Gaur, A. Mudgal, and R. R. Singh, “Improved approximation algorithms for cumulative VRP with stochastic demands,” Discret. Appl. Math., pp. 1–11, 2018. https://doi.org/10.1016/j.dam.2018.01.012.
A. Gutierrez, L. Dieulle, N. Labadie, and N. Velasco, “A hybrid metaheuristic algorithm for the vehicle routing problem with stochastic demands,” Comput. Oper. Res., vol. 99, pp. 135–147, 2018. https://doi.org/10.1016/j.cor.2018.06.012.
D. Guimarans, O. Dominguez, J. Panadero, and A. A. Juan, “A simheuristic approach for the two-dimensional vehicle routing problem with stochastic travel times,” Simul. Model. Pract. Theory, vol. 89, pp. 1–14, 2018. https://doi.org/10.1016/j.simpat.2018.09.004.
M. W. Ulmer, J. C. Goodson, D. C. Mattfeld, and M. Hennig, “Offline–online approximate dynamic programming for dynamic vehicle routing with stochastic requests,” Transp. Sci., vol. 53, no. 1, pp. 185–202, 2019. https://doi.org/10.1287/trsc.2017.0767.
D. M. Miranda, J. Branke, and S. V. Conceição, “Algorithms for the multi-objective vehicle routing problem with hard time windows and stochastic travel time and service time,” Appl. Soft Comput. J., vol. 70, pp. 66–79, 2018. https://doi.org/10.1016/j.asoc.2018.05.026.
Y. Shi, T. Boudouh, O. Grunder, and D. Wang, “Modeling and solving simultaneous delivery and pick-up problem with stochastic travel and service times in home health care,” Expert Syst. Appl., vol. 102, pp. 218–233, 2018. https://doi.org/10.1016/j.eswa.2018.02.025.
F. V. Louveaux and J. J. Salazar-González, “Exact approach for the vehicle routing problem with stochastic demands and preventive returns,” Transp. Sci., vol. 52, no. 6, pp. 1463–1478, 2018. https://doi.org/10.1287/trsc.2017.0780.
F. Lagos, M. A. Klapp, and A. Toriello, “Branch-and-Price for Routing with Probabilistic Customers,” pp. 1–31, 2018.
M. Salavati-Khoshghalb, M. Gendreau, O. Jabali, and W. Rei, “A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands,” Transp. Sci., vol. 53, no. 5, pp. 1334–1353, 2019. https://doi.org/10.1287/trsc.2018.0876.
V. Baradaran, A. Shafaei, and A. H. Hosseinian, “Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach,” Comput. Ind. Eng., vol. 131, pp. 187–199, 2019. https://doi.org/10.1016/j.cie.2019.03.047.
J. Oyola, H. Arntzen, and D. L. Woodruff, “The stochastic vehicle routing problem, a literature review, Part II: solution methods,” EURO J. Transp. Logist., vol. 6, no. 4, pp. 349–388, 2017. https://doi.org/10.1007/s13676-016-0099-7.
F. Rayat, M. M. Musavi, and A. Bozorgi-Amiri, “Bi-objective reliable location-inventory-routing problem with partial backordering under disruption risks: A modified AMOSA approach,” Appl. Soft Comput. J., vol. 59, pp. 622–643, 2017. http://dx.doi.org/10.1016/j.asoc.2017.06.036.
Publicado
Cómo citar
Número
Sección
Altmetrics
Descargas
Licencia
La revista ofrece acceso abierto bajo una Licencia Creative Commons Attibution License
Esta obra está bajo una licencia Creative Commons Attribution (CC BY 4.0).