Evaluation of genetic variations and phylogeny of the most popular pear (Pyrus communis L.) cultivars in Duhok city using AFLP markers

  • Shaymaa H. Ali Ph.D. of Molecular Biology, Scientific Research Centre, College of Science, University of Duhok, Kurdistan Region-Iraq https://orcid.org/0000-0002-0436-1407
  • Hemin E. Othman PhD of Molecular biology, Scientific Research Centre, College of Science, University of Duhok, Kurdistan Region-Iraq https://orcid.org/0000-0002-7659-4568
  • Payman A. Abdullah-Zibari Assist. Professor of Cytogenetics, Department of Horticulture, College of Agriculture, University of Duhok
  • Jaladet M.S. Jubrael Professor of Molecular biology, Scientific Research Centre, College of Science, University of Duhok, Kurdistan Region-Iraq https://orcid.org/0000-0001-8762-338X

Resumen

Introduction: Genotyping and evaluation of genetic variation and polymorphic information content of the locally cultivated pear (Pyrus communis L.) might play an important role in building the genetic bank. These are also immensely important for present and future pear breeding program in the region. Methods: In the current study, AFLP markers have been employed to estimate the level of genetic diversity and to assess the phylogeny among the seven most popular pear cultivars in Duhok city. Results: Eight selective primer combinations generated a total of 653 AFLP fragments from which 445 (68.2%) fragments were polymorphic. The number of visible amplified products per primer combination were varied and ranged from 66 to 96 bands. The highest percentage of polymorphism (78.4%) was observed by the primer pair P174/M182, while the lowest percentage of polymorphism (58.6%) was observed by the primer pair P174/M100. The highest PIC (0.85) was obtained with the primer combination P174/M182, while, the lowest PIC (0.49) was obtained by the primer combination P174/M307. The genetic distance was ranged from 0.1348 (between Danimarki and Amreki cultivars) to 0.3131 (between Italy and Zaafaran2 cultivars). Based on the AFLP data, all the seven pear genotypes were successfully clustered into two separate clusters (C1 and C2) with an out-group of Itali cultivar. Conclusions: Overall, it can be concluded that there was high polymorphism among the studied genotypes. Also, it can be stated that the AFLP was a reliable and a powerful technique in genotyping and discriminating of respective pear cultivars.

Citas

Katayama H., Amo H., Wuyun T., Uematsu C. and Iketani H. Genetic Structure and Diversity of the Wild Ussurian Pear in East Asia. Breeding Science. 2016; 66:90-99.

Li L., Deng C.H., Kn€abel M., Chagne´ D., Kumar S., Sun J., Zhang S. and Wu J. Integrated high-density consensus genetic map of Pyrus and anchoring of the ‘Bartlett’ v1.0 (Pyruscommunis) genome. DNA Research. 2017; 24(3), 289-30.

Erfani J., Ebadi A., Abdollahi H., Fatahi R. Genetic Diversity of Some Pear Cultivars and Genotypes Using Simple Sequence Repeat (SSR) Markers. Plant Molecular Biology Reporter. 2012; 30:1065-1072.

Silva G. J., Souza T. M., Barbieri R. L. and Costa de Oliveira A. Origin, Domestication, and Dispersing of Pear (Pyrus spp.). Hindawi Publishing Corporation, Advances in Agriculture 8p. 2014; http://dx.doi.org/10.1155/2014/541097.

Wu J., Wang Z., Shi Z., Zhang S., Ming R., Zhu S., M. Khan A., Tao S., Korban S.S., Wang H., Chen N.J., Nishio T., Xu X., Cong L., Qi K., Huang X., Wang Y., Zhao X., Wu J., Deng C., Gou C., Zhou W., Yin H., Qin G., Sha Y., Tao Y., Chen H., Yang Y., Song Y., Zhan D., Wang J., Li L., Dai M., Gu C., Wang Y., Shi D., Wang X., Zhang H., Zeng L., Zheng D., Wang C., Chen M., Wang G., Xie L., Sovero V., Sha S., Huang W., Shujun Zhang S., Zhang M., Sun J., Xu L., Li Y., Liu X., Li Q., Shen J., Wang J., Paull R.E., Bennetzen J.L., Wang J. and Zhang S. The Genome of the Pear (PyrusbretschneideriRehd.). Genome Res. 2013; 23(2):396-408. doi: 10.1101/gr.144311.112.

Wolf J., Baránková K., Nečas T. AFLP Molecular Identification and Genetic Relationship of Chinese and Japanese Pear Cultivars Grown in Middle European Conditions. Not Bot HortiAgrobo. 2017; 45(2):369-374.https://doi.org/10.15835/nbha45210875.

Lu M., Tang H., Chen X., Gao J., Chen Q. and Lin L. Comparative Genome Mapping Between Apple and Pear by Apple Mapped SSR Markers. American-Eurasian Journal of Agriculture and Environment Science. 2010; 9 (3): 303-309.

Bennici S., Casas G.L., Distefano G., Guardo M.D., Continella A., Ferlito F., Gentile A. and Malfa S. L. Elucidating the Contribution of Wild Related Species on Autochthonous Pear Germplasm: A case study from Mount Etna. PLoS ONE. 2018; 13(6): 1-19. https://doi.org/10.1371/journal.pone.0198512.

Wolko Ł., Bocianowski J., Antkowiak W., Słomski R. Genetic Diversity and Population Structure of Wild Pear (Pyruspyraster(L.) Burgsd.) in Poland.Open Life Science. 2015; 10: 19-29.

Monte-Corvo L., Cabrita L., Oliveira C. and Leitão J. Assessment of Genetic Relationships amongPyrus Species and Cultivars Using AFLP and RAPD Markers. Genetic Resources and Crop Evolution. 2000;47: 257-265.

Xue H., Zhang P., Shi T., Yang J., Wang L., Wang S., Su Y., Zhang H., Qiao Y. and Li X.Genome-Wide Characterization of Simple Sequence Repeats in PyrusBretschneideri and their Application in an Analysis of Genetic Diversity in Pear. Genomics. 2018; 19(473). 1-13.

Akçay M. E., Burak M., Kazan K., ksel C.Y., F. Mutaf F., Bakir M., Ayanog˘ lu H. and Ergu A. Genetic Analysis of Anatolian Pear Germplasm by Simple Sequence Repeats. Annals ofApplied Biology. 2014; 164 (2014): 441-452.

Liu Q., Song Y., Liu L., Zhang M., Sun J., Zhang S. and Wu J. Genetic Diversity and Population Structure of Pear (Pyrus spp.) Collections Revealed by a Set of Core Genome-Wide SSR Markers. Tree Genetics and Genomes. 2015; 11: 128-149.

Weigand F., Baum M. and Udupa S. DNA Molecular Marker Techniques. ICARDA, Aleppo, Syria. 1993; 51: 1-10.

Vos P., Hogers R., Bleeker M., Reijians M., Van-de Lee T., Hornes M.,Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a New Technique for DNA Fingerprinting. Nucleic Acids Research. 1995; 23: 4407-4414.

RohlfF. J. NT SYS-PC. Numerical Taxonomy and Multivariate Analysis System. Version 1.8 Exeter Software, Setauket, New Yourk, U.S.A. 1993.

Nei M. and Li W. H. Mathematical model for studding geneticvariation in terms of restriction endonuclease. Pro: Nat.Acad. Sci. U.S.A.1979; 74: 5369-5273.

Sneath P. H. A. and Sokal R.R. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: Freeman, 1973. 573 p.

Swofford D. L. and Olsen G. J. Phylogeny reconstruction. In: Molecular Systematics(Hillis, D.M. and Moritz, C., eds.). Sunderlands, Massachussets. 1990; 411-501.

Avval S. E. Assessing Polymorphism Information Content (PIC) Using SSR Molecular Markers on Local Species of CitrullusColocynthis. Case Study: Iran, Sistan-Balouchestan Province. Journal of Molecular Biology Research. 2017; 7(1): 42-49.DOI:10.5539/jmbr.v7n1p42.

Nei, M. Molecular Evolutionary Genetics. (Chapter 9). New York: Columbia University Press. 1987.https://doi.org/10.1002/ajpa.1330750317.

Doğan İ. and Doğan N. Genetic Distance Measures: Review. TurkiyeKlinikleri Journal of Biostatistics. 2016; 8(1):87-93. doi: 10.5336/biostatic.2015-49517.

Cervera M. T., Cabezas J. A., Sancha J. C., Martínez de Toda F., and Martínez-Zapater J. M. Application of AFLPS to the characterization of grapevine Vitisvinifera L. genetic resources. A case study with accessions from Rioja (Spain). TheorAppl Genet. 1998; 97: 51. https://doi.org/10.1007/s001220050866.

Publicado
2018-12-28
Cómo citar
Ali, S. H., Othman, H. E., Abdullah-Zibari, P. A., & Jubrael, J. M. (2018). Evaluation of genetic variations and phylogeny of the most popular pear (Pyrus communis L.) cultivars in Duhok city using AFLP markers. INNOVACIENCIA, 6(1), 1-10. https://doi.org/10.15649/2346075X.461
Sección
Artículo de investigación científica y tecnológica