Synthesis and thermal properties of some phenolic resins
DOI:
https://doi.org/10.15649/2346075X.508Keywords:
Phenolic resin, Physical properties, TGA, DSCAbstract
Introduction: Phenolic resins have been in use since the early twentieth century and are considered the first class of synthetic polymers to achieve commercial success, moreover phenolic resins continue to succeed and attract special interest in a large range of industrial applications such as adhesives, paints, and composites; because of their unique physical and chemical properties. Materials and Methods: Prepolymers resol resins (RR, RH, RP, and RC) were synthesized by the reaction of phenolic compounds (resorcinol, hydroquinone, phloroglucinol, and catechol) respectively, with formaldehyde at molar ratio phenol/ formaldehyde 1/1.5, using sodium hydroxide as a catalyst. These resins were characterized by FTIR. The curing reaction of these resins was evaluated using differential scanning calorimetry (DSC), while the thermal stability study was evaluated using thermogravimetric analysis (TGA). Results and Discussion:
From the results showing that these prepolymers have different curing temperatures and curing energy, while the TGA study showed that the cured resins have decomposition temperature more than 300 ºC, and char residue at 650 ºC more than 60%. Conclusions: These resol resins have different gel times (8-55) min, and viscosities (435-350) mpa.s. The curing temperature of these resin obtained from DSC curves was (120, 129, 105 and 127 °C), while the thermal behavior of the cured resins obtained from TGA curves showed that these cured resin have two decomposition temperatures and the rate of decomposition in the order of RC < RR< .
References
Wang M, Leitch M, Xu CC. Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. European Polymer Journal. 2009;45(12):3380-8. https://doi.org/10.1016/j.eurpolymj.2009.10.003
Yuan Z, Zhang Y, Xu CC. Synthesis and thermomechanical property study of Novolac phenol-hydroxymethyl furfural (PHMF) resin. RSC Advances. 2014;4(60):31829-35. https://doi.org/10.1039/C4RA04458D
Pilato L. Resin chemistry. Phenolic Resins: A Century of Progress: Springer; 2010. p. 41-91.
https://doi.org/10.1007/978-3-642-04714-5_4
Yan N, Zhang B, Zhao Y, Farnood RR, Shi J. Application of Biobased Phenol Formaldehyde Novolac Resin Derived from Beetle Infested Lodgepole Pine Barks for Thermal Molding of Wood Composites. Industrial & Engineering Chemistry Research. 2017;56(22):6369-77. https://doi.org/10.1021/acs.iecr.7b00353
Chen-Chi M, Sung S-C, Wang F-Y, Chiang LY, Wang LY, Chiang C-L. Thermal, mechanical, and morphological Properties of Novolac-Type Phenolic Resin Blended with Fullerenol Polyurethane and Linear Polyurethane. Composites: Part B. 2001; 36: 2436-43. https://doi.org/10.1002/polb.1215
Wang FY, Ma CCM, Wu HD. Hydrogen bonding in polyamide toughened novolac type phenolic resin. Journal of applied polymer science. 1999;74(9):2283-9. https://doi.org/10.1002/(SICI)1097-4628(19991128)74:9<2283::AID-APP18>3.0.CO;2-X
Allin SB. Polymer Science and Technology, 2nd Edition (Joel R. Fried). Journal of Chemical Education. 2004;81(6):809. https://doi.org/10.1021/ed081p809
Choi MH, Chung IJ. Mechanical and thermal properties of phenolic resin‐layered silicate nanocomposites synthesized by melt intercalation. Journal of Applied Polymer Science. 2003;90(9):2316-21. https://doi.org/10.1002/app.12763
Shukla SK, Srivastava K, Srivastava D. Studies on the thermal, mechanical and chemical resistance properties of natural resource derived polymers. Materials Research. 2015;18(6):1217-23. https://doi.org/10.1590/1516-1439.007715
Lee YK, Kim DJ, Kim HJ, Hwang TS, Rafailovich M, Sokolov J. Activation energy and curing behavior of resol‐and novolac‐type phenolic resins by differential scanning calorimetry and thermogravimetric analysis. Journal of applied polymer science. 2003;89(10):2589-96.
https://doi.org/10.1002/app.12340
Park B-D, Riedl B, Hsu EW, Shields J. Differential scanning calorimetry of phenol-formaldehyde resins cure-accelerated by carbonates. Polymer. 1999;40(7):1689-99. https://doi.org/10.1016/S0032-3861(98)00400-5
Heath R. Aldehyde Polymers: Phenolics and Aminoplastics. Brydson's Plastics Materials (Eighth Edition): Elsevier; 2017. p. 705-42. https://doi.org/10.1016/B978-0-323-35824-8.00025-6
Fink JK. Reactive polymers: Fundamentals and applications: A concise guide to industrial polymers: William Andrew; 2017.
Grenier-Loustalot M-F, Raffin G, Salino B, Paı̈ssé O. Phenolic resins Part 6. Identifications of volatile organic molecules during thermal treatment of neat resols and resol filled with glass fibers. Polymer. 2000;41(19):7123-32. https://doi.org/10.1016/S0032-3861(00)00045-8
Schawe JE, Ziegelmeier S. Determination of the thermal short time stability of polymers by fast scanning calorimetry. Thermochimica Acta. 2016; 623: 80-5. https://doi.org/10.1016/j.tca.2015.11.020
Samoilenko V, Atyasova E, Blaznov A, Zimin D, Tatarintseva O, Khodakova N. A study of heat resistance of polymer/epoxy composites. Polzunovskiy Vestnik. 2015(4):131-5.
Chen ZQ, Chen YF, Liu HB, editors. Study on thermal degradation of phenolic resin. Applied Mechanics and Materials; 2013: Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMM.422.24
Chen Y, Fan D, Qin T, Chu F. Thermal degradation and stability of accelerated-curing phenol-formaldehyde resin. BioResources. 2014;9(3):4063-75. https://doi.org/10.15376/biores.9.3.4063-4075
Chen Y, Chen Z, Xiao S, Liu H. A novel thermal degradation mechanism of phenol-formaldehyde type resins. Thermochimica Acta. 2008;476(1-2):39-43. https://doi.org/10.1016/j.tca.2008.04.013
Schindler A, Doedt M, Gezgin Ş, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. Journal of Thermal Analysis and Calorimetry. 2017;129(2):833-42. https://doi.org/10.1007/s10973-017-6208-5
Gaisford S, Kett V, Haines P. Principles of thermal analysis and calorimetry: Royal society of chemistry; 2016.
He G, Riedl B. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Science and Technology. 2004;38(1):69-81. https://doi.org/10.1007/s00226-003-0221-5
Theophanides T. Infrared spectroscopy-materials science, engineering and technology. 2012.
Siesler HW, Ozaki Y, Kawata S, Heise HM. Near-infrared spectroscopy: principles, instruments, applications: John Wiley & Sons; 2008.
Gao J, Liu Y, Yang L. Thermal stability of boron-containing phenol formaldehyde resin. Polymer degradation and stability. 1999;63(1):19-22. https://doi.org/10.1016/S0141-3910(98)00056-1
Fyfe CA, McKinnon MS, Rudin A, Tchir WJ. Investigation of the mechanism of the thermal decomposition of cured phenolic resins by high-resolution carbon-13 CP/MAS solid-state NMR spectroscopy. Macromolecules. 1983;16(7):1216-9. https://doi.org/10.1021/ma00241a033
Zhao Y, Yan N, Feng MW. Thermal degradation characteristics of phenol-formaldehyde resins derived from beetle infested pine barks. Thermochimica Acta. 2013;555:46-52. https://doi.org/10.1016/j.tca.2012.12.002
Downloads
Published
How to Cite
Issue
Section
Altmetrics
Downloads
License
All articles published in this scientific journal are protected by copyright. The authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits sharing the work with authorship recognition and without commercial purposes.
Readers may copy and distribute the material from this journal issue for non-commercial purposes in any medium, provided the original work is cited and credit is given to the authors and the journal.
Any commercial use of the material from this journal is strictly prohibited without written permission from the copyright holder.
For more information on the copyright of the journal and open access policies, please visit our website.