Supervised evolutionary learning: Use of gradient histogram & particle swarm algorithm to detection & tracking pedestrian in sequence of infrared images
DOI:
https://doi.org/10.15649/2346075X.2319Keywords:
Pedestrian Identification, Infrared Imaging, Maximal Learning, Neural Network, Gradient Histogram, Particle Swarm OptimizationAbstract
Recently, tracking and pedestrian detection from various images have become one of the major issues in the field of image processing and statistical identification. In this regard, using evolutionary learning-based approaches to improve performance in different contexts can greatly influence the appropriate response. There are problems with pedestrian tracking/identification, such as low accuracy for detection, high processing time, and uncertainty in response to answers. Researchers are looking for new processing models that can accurately monitor one's position on the move. In this study, a hybrid algorithm for the automatic detection of pedestrian position is presented. It is worth noting that this method, contrary to the analysis of visible images, examines pedestrians' thermal and infrared components while walking and combines a neural network with maximum learning capability, wavelet kernel (Wavelet transform), and particle swarm optimization (PSO) to find parameters of learner model. Gradient histograms have a high effect on extracting features in infrared images. As well, the neural network algorithm can achieve its goal (pedestrian detection and tracking) by maximizing learning. The proposed method, despite the possibility of maximum learning, has a high speed in education, and results of various data sets in this field have been analyzed. The result indicates a negligible error in observing the infrared sequence of pedestrian movements, and it is suggested to use neural networks because of their precision and trying to boost the selection of their hyperparameters based on evolutionary algorithms.
References
Zou, H., Sun, H., & Ji, K. (2012, December). Real-time infrared pedestrian detection via sparse representation. In Computer Vision in Remote Sensing (CVRS), 2012 International Conference on (pp. 195-198). IEEE.
Wang, J. T., Chen, D. B., Chen, H. Y., & Yang, J. Y. (2012). On pedestrian detection and tracking in infrared videos. Pattern Recognition Letters, 33(6), 775-785.
https://doi.org/10.1016/j.patrec.2011.12.011
Teutsch, M., & Müller, T. (2013, May). Hot spot detection and classification in LWIR videos for person recognition. In SPIE Defense, Security, and Sensing (pp. 87440F- 87440F). International Society for Optics and Photonics.
https://doi.org/10.1117/12.2015754
Elguebaly, T., & Bouguila, N. (2013). Finite asymmetric generalized Gaussian mixture models learning for infrared object detection. Computer Vision and Image Understanding, 117(12), 1659-1671.
https://doi.org/10.1016/j.cviu.2013.07.007
Teutsch, M., Muller, T., Huber, M., & Beyerer, J. (2014). Low resolution person detection with a moving thermal infrared camera by hot spot classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 209-216).
https://doi.org/10.1109/CVPRW.2014.40
Akhloufi, M. A., Porcher, C., & Bendada, A. (2014, June). Fusion of thermal infrared and visible spectrum for robust pedestrian tracking. In SPIE Defense+ Security (pp. 90760O-90760O). International Society for Optics and Photonics.
https://doi.org/10.1117/12.2063306
Soundrapandiyan, R., & Mouli, P. C. (2015). Adaptive Pedestrian Detection in Infrared Images Using Background Subtraction and Local Thresholding. Procedia Computer Science, 58, 706-713.
https://doi.org/10.1016/j.procs.2015.08.091
Rajkumar, S., & Mouli, P. C. (2015, February). Pedestrian detection in infrared images using local thresholding. In Electronics and Communication Systems (ICECS), 2015 2nd International Conference on (pp. 259-263). IEEE.
https://doi.org/10.1109/ECS.2015.7124904
Berg, A., Ahlberg, J., & Felsberg, M. (2015, August). A thermal Object Tracking benchmark. In Advanced Video and Signal Based Surveillance (AVSS), 2015 12th IEEE International Conference on (pp. 1-6). IEEE.
https://doi.org/10.1109/AVSS.2015.7301772
Hwang, S., Park, J., Kim, N., Choi, Y., & So Kweon, I. (2015). Multispectral pedestrian detection: Benchmark dataset and baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1037-1045).
https://doi.org/10.1109/CVPR.2015.7298706
Pawłowski, P., Piniarski, K., & Dąbrowski, A. (2015, September). Pedestrian detection in low resolution night vision images. In Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2015 (pp. 185-190). IEEE.
https://doi.org/10.1109/SPA.2015.7365157
Yang, C., Liu, H., Liao, S., & Wang, S. (2015). Pedestrian Detection in Thermal Infrared Image Using Extreme Learning Machine. In Proceedings of ELM-2014 Volume 2 (pp. 31-40). Springer International Publishing.
https://doi.org/10.1007/978-3-319-14066-7_4
Zhao, X., He, Z., Zhang, S., & Liang, D. (2015). Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification. Pattern Recognition, 48(6), 1947-1960
https://doi.org/10.1016/j.patcog.2014.12.013
Zhuang, J., & Liu, Q. (2016). Transferred IR pedestrian detector toward distinct scenarios adaptation. Neural Computing and Applications, 27(3), 557-569.
https://doi.org/10.1007/s00521-015-1877-0
Ma, Y., Wu, X., Yu, G., Xu, Y., & Wang, Y. (2016). Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery. Sensors, 16(4), 446.
https://doi.org/10.3390/s16040446
Dai, C., Zheng, Y., & Li, X. (2007). Pedestrian detection and tracking in infrared imagery using shape and appearance. Computer Vision and Image Understanding, 106(2), 288-299.
https://doi.org/10.1016/j.cviu.2006.08.009
Seryasat, O. R., Honarvar, F., & Rahmani, A. (2010, October). Multi-fault diagnosis of ball bearing based on features extracted from time-domain and multi-class support vector machine (MSVM). In 2010 IEEE International Conference on Systems, Man and Cybernetics (pp. 4300-4303). IEEE.
https://doi.org/10.1109/ICSMC.2010.5642390
Seryasat, O. R., & Haddadnia, J. (2018). Evaluation of a new ensemble learning framework for mass classification in mammograms. Clinical breast cancer, 18(3), e407-e420.
https://doi.org/10.1016/j.clbc.2017.05.009
Seryasat, Omid Rahmani, and Javad Haddadnia. "Evaluation of a new ensemble learning framework for mass classification in mammograms." Clinical breast cancer 18.3 (2018): e407-e420.
https://doi.org/10.1016/j.clbc.2017.05.009
Biswas, S. K., & Milanfar, P. (2017). Linear support tensor machine with LSK channels: Pedestrian detection in thermal infrared images. IEEE transactions on image processing, 26(9), 4229-4242.
https://doi.org/10.1109/TIP.2017.2705426
Cai, Y., Liu, Z., Wang, H., & Sun, X. (2017). Saliency-based pedestrian detection in far infrared images. IEEE Access, 5, 5013-5019.
https://doi.org/10.1109/ACCESS.2017.2695721
Ma, M. (2019). Infrared pedestrian detection algorithm based on multimedia image recombination and matrix restoration. Multimedia Tools and Applications, 1-16.
Kwak, J. Y., Ko, B. C., & Nam, J. Y. (2017). Pedestrian tracking using online boosted random ferns learning in far-infrared imagery for safe driving at night. IEEE Transactions on Intelligent Transportation Systems, 18(1), 69-81.
https://doi.org/10.1109/TITS.2016.2569159
Bai, X., Wang, Y., Liu, H., & Guo, S. (2018). Symmetry information based fuzzy clustering for infrared pedestrian segmentation. IEEE Transactions on Fuzzy Systems, 26(4), 1946-1959.
https://doi.org/10.1109/TFUZZ.2017.2756827
Shen, G., Zhu, L., Jihan, L. O. U., Shen, S., Liu, Z., & Tang, L. (2019). Infrared multi-pedestrian tracking in vertical view via Siamese Convolution Network (December 2018). IEEE Access.
https://doi.org/10.1109/ACCESS.2019.2892469
Lahmyed, R., El Ansari, M., & Ellahyani, A. (2018). A new thermal infrared and visible spectrum images-based pedestrian detection system. Multimedia Tools and Applications, 1-25.
https://doi.org/10.1007/s11042-018-6974-5
Hsu, W. Y. (2018). Automatic pedestrian detection in partially occluded single image. Integrated Computer-Aided Engineering, 25(4), 369-379.
https://doi.org/10.3233/ICA-170573
Llorca, D. F., Sotelo, M. A., Hellín, A. M., Orellana, A., Gavilán, M., Daza, I. G., & Lorente, A. G. (2012). Stereo regions-of-interest selection for pedestrian protection: A survey. Transportation research part C: emerging technologies, 25, 226-237.
https://doi.org/10.1016/j.trc.2012.06.006
Armanfard, N., Komeili, M., & Kabir, E. (2012). TED: A texture-edge descriptor for pedestrian detection in video sequences. Pattern Recognition, 45(3), 983-992.
https://doi.org/10.1016/j.patcog.2011.08.010
Negri, P., Goussies, N., & Lotito, P. (2014). Detecting pedestrians on a movement feature space. Pattern recognition, 47(1), 56-71.
https://doi.org/10.1016/j.patcog.2013.05.020
Rezaee, Kh, Haddadnia, J.Delbari, A, Elderly drop monitoring system based on Gaussian hybrid model and body anatomical changes in video images, Journal of Machine Vision and Image Processing,1(2),76-77
Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513-529.
Downloads
Published
How to Cite
Issue
Section
Altmetrics
Downloads
License
All articles published in this scientific journal are protected by copyright. The authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits sharing the work with authorship recognition and without commercial purposes.
Readers may copy and distribute the material from this journal issue for non-commercial purposes in any medium, provided the original work is cited and credit is given to the authors and the journal.
Any commercial use of the material from this journal is strictly prohibited without written permission from the copyright holder.
For more information on the copyright of the journal and open access policies, please visit our website.