In silico screening of flavonoids targeting chromosomal replication initiator protein as a molecular target for new antibiotics in Shigella dysenteriae.

Authors

DOI:

https://doi.org/10.15649/2346075X.4005

Keywords:

AutoDock Vina; Corylin; Homology Modeling; Molecular Docking

Abstract

Introduction: DNA chromosomal replication initiator protein, DnaA is a component of bacterial division machinery. Objetives: virtual screening of phytochemicals for new antibiotics at novel molecular targets. Materials and Methods: SWISS-Model tool was used in homology modeling of this protein and validation tools were also used to check for its accuracy. The evaluation tools were ERRAT, PROCHECK and Molprobity servers. The refined model by GalaxyWEB server, then employed in molecular docking experiments. A total of 300 natural products were used in virtual screening for lead compounds targeting the model by AutoDock Vina software. Results and Discussion: Corylin among then best ligands that have binding affinities lower than ADP as control. Interactions in the form of hydrogen bonds and hydrophobic interactions were analyzed by LigPlot. The best compounds were submitted into iGEMDOCK docking tool for consensus scoring approach. admetSAR 2.0 was used to predict for pharmacokinetics, interactions and toxicities of these ligands inside the human body. Conclusions: Therefore, preliminary screening of lead compounds must be accompanied by studying pharmacologic properties.

References

Salleh MZ, Nik Zuraina NMN, Hajissa K, Ilias MI, Banga Singh KK, Deris ZZ. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Shigella Species in Asia: a systematic review and meta-analysis. Antibiotics. 2022;11(11):1653. https://doi.org/10.3390/antibiotics11111653

Chagas M do SS, Behrens MD, Moragas-Tellis CJ, Penedo GXM, Silva AR, Gonçalves-de-Albuquerque CF. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022. https://doi.org/10.1155/2022/9966750

Dsouza D, Nanjaiah L. Antibacterial activity of 3, 3', 4'-Trihydroxyflavone from Justicia wynaadensis against diabetic wound and urinary tract infection. Brazilian J Microbiol. 2018;49:152-61. https://doi.org/10.1016/j.bjm.2017.05.002

Zhang Y, Zhang Y, Ma R, Sun W, Ji Z. Antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri. Int J Environ Res Public Health. 2023;20(6):4676. https://doi.org/10.3390/ijerph20064676

Sweet R, Booth C, Gotts K, Grove SF, Kroon PA, Webber M. Comparison of Antibacterial Activity of Phytochemicals against Common Foodborne Pathogens and Potential for Selection of Resistance. Microorganisms. 2023;11(10):2495. https://doi.org/10.3390/microorganisms11102495

Al-Khafaji ZHA, Saeed YS. Investigate the Antimicrobial Activity of Methanolic Extract of Cladophora glomerata. J Commun Dis (E-ISSN 2581-351X P-ISSN 0019-5138). 2024;56(1):8-12. https://doi.org/10.24321/0019.5138.202402

Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. https://doi.org/10.3390/ijms20184331

Ye J, Yang X, Ma C. Qsar, docking, and molecular dynamics simulation studies of sigmacidins as antimicrobials against streptococci. Int J Mol Sci. 2022;23(8):4085. https://doi.org/10.3390/ijms23084085

Hosen MI, Mukhrish YE, Jawhari AH, Celik I, Erol M, Abdallah EM, et al. Design, synthesis, in silico and POM studies for the identification of the pharmacophore sites of benzylidene derivatives. Molecules. 2023;28(6):2613. https://doi.org/10.3390/molecules28062613

Al-Khayyat MZ. In silico Screening for Inhibitors Targeting 4-diphosphocytidyl-2-C-methyl-D-erythritol Kinase in Salmonella typhimurium. Jordan J Biol Sci. 2021;14(1). https://doi.org/10.54319/jjbs/140110

Al-Khayyat MZ. In silico screening of natural products targeting chorismate synthase. Innovaciencia. 2019;7(1). https://doi.org/10.15649/2346075x.505

Grimwade JE, Leonard AC. Targeting the bacterial orisome in the search for new antibiotics. Front Microbiol. 2017;8:315840. https://doi.org/10.3389/fmicb.2017.02352

van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother. 2017;72(5):1275-84. https://doi.org/10.1093/jac/dkw548

Menikpurage IP, Woo K, Mera PE. Transcriptional activity of the bacterial replication initiator DnaA. Front Microbiol. 2021;12:662317. https://doi.org/10.3389/fmicb.2021.662317

McGuffin LJ, Edmunds NS, Genc AG, Alharbi SMA, Salehe BR, Adiyaman R. Prediction of protein structures, functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers. Nucleic Acids Res. 2023;51(W1):W274-80. https://doi.org/10.1093/nar/gkad297

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. https://doi.org/10.1093/nar/gky427

Shin WH, Lee GR, Heo L, Lee H, Seok C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Des. 2014;2(1):1-11. https://www.bdjn.org/journal/view.html?uid=6

Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-9. https://doi.org/10.1002/pro.5560020916

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283-91. https://doi.org/10.1107/s0021889892009944

Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 2018;27(1):293-315. https://doi.org/10.1002/pro.3330

Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, et al. ZINC20-a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model. 2020;60(12):6065-73. https://doi.org/10.1021/acs.jcim.0c00675

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 2012; 64:4-17. https://doi.org/10.1016/j.addr.2012.09.019

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:1-14. https://doi.org/10.1186/1758-2946-3-33

Trott O, Olson A. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function. Effic Optim Multithreading. 2009;31:455-61. https://doi.org/10.1002/jcc.21334

Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127-34. https://doi.org/10.1093/protein/8.2.127

Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics. 2011;12:1-11. https://doi.org/10.1186/1471-2105-12-S1-S33

Chen QH, Chen XM, Chen XH, Komori A, Hung A, Li H. Structure-based multi-ligand molecular modeling to predict the synergistic effects of limonin and obacunone from simiao pill against nitric oxide synthase 3 associated with hyperuricemia. Precis Med Res. 2023;5:13. https://doi.org/10.53388/pmr20230013

Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-9. https://doi.org/10.1093/bioinformatics/bty707

Pavlopoulou A, Michalopoulos I. State-of-the-art bioinformatics protein structure prediction tools. Int J Mol Med. 2011;28(3):295-310. https://doi.org/10.3892/ijmm.2011.705

Tiwari M, Gupta S, Bhargava P. Virtual screening and molecular dynamics simulation studies to predict the binding of Sisymbrium irio L. derived phytochemicals against Staphylococcus aureus dihydrofolate reductase (DHFR). J Appl Nat Sci. 2022;14(4):1297-307. https://doi.org/10.31018/jans.v14i4.3641

Erzberger JP, Pirruccello MM, Berger JM. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J. 2002; 4763-4773. https://doi.org/10.1093/emboj/cdf496

Pražnikar J, Tomić M, Turk D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci Rep. 2019;9(1):1678. https://doi.org/10.1107/S2053273318094494

Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(suppl_2):W375-83. https://doi.org/10.1093/nar/gkm216

Hung YL, Fang SH, Wang SC, Cheng WC, Liu PL, Su CC, et al. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep. 2017;7(1):46299. https://doi.org/10.1038/srep46299

Zaidi SFH, Yamada K, Kadowaki M, Usmanghani K, Sugiyama T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J Ethnopharmacol. 2009;121(2):286-91.https://doi.org/10.1016/j.jep.2008.11.001

Shahid F, Alghamdi YS, Mashraqi M, Khurshid M, Ashfaq UA. Proteome based mapping and molecular docking revealed DnaA as a potential drug target against Shigella sonnei. Saudi J Biol Sci. 2022;29(2):1147-59. https://doi.org/10.1016/j.sjbs.2021.09.051

Blanes-Mira C, Fernández-Aguado P, de Andrés-López J, Fernández-Carvajal A, Ferrer-Montiel A, Fernández-Ballester G. Comprehensive survey of consensus docking for high-throughput virtual screening. Molecules. 2022;28(1):175. https://doi.org/10.3390/molecules28010175

Lamothe SM, Guo J, Li W, Yang T, Zhang S. The human ether-a-go-go-related gene (hERG) potassium channel represents an unusual target for protease-mediated damage. J Biol Chem. 2016;291(39):20387-401. https://doi.org/10.1074/jbc.m116.743138

Zhao HC, Wu J, Zheng L, Zhu T, Xi BS, Wang B, et al. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids Surfaces B Biointerfaces. 2003 Jun;29(2-3):143-7. https://doi.org/10.3390/ijms222312808

Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2(3):192-204. https://doi.org/10.1038/nrd1032

Wright SH. Molecular and cellular physiology of organic cation transporter 2. Am J Physiol Physiol. 2019;317(6):F1669-79. https://doi.org/10.1152/ajprenal.00422.2019

Zarei A, Ramazani A, Pourmand S, Sattari A, Rezaei A, Moradi S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat Prod Res. 2022;36(16):4254-60. https://doi.org/10.1080/14786419.2021.1974435

Khan MI, Pathania S, Al-Rabia MW, Ethayathulla AS, Khan MI, Allemailem KS, et al. MolDy: Molecular dynamics simulation made easy. Bioinformatics. 2024;40(6). https://doi.org/10.1093/bioinformatics/btae313

Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371-87. https://doi.org/10.1038/nrd3975

Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/

Downloads

Additional Files

Published

2024-09-03

How to Cite

Al-Khayyat, M. (2024). In silico screening of flavonoids targeting chromosomal replication initiator protein as a molecular target for new antibiotics in Shigella dysenteriae. Innovaciencia, 12(1). https://doi.org/10.15649/2346075X.4005

Issue

Section

Original research and innovation article

Altmetrics

Downloads

Download data is not yet available.