Reacciones de oxidación de derivados de ciclopent-2-en-1-iltiofeno

Autores/as

  • Yurii Klimko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • Dmitrii Pisanenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • Iryna Koshchii National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • Igor Levandovskii National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.15649/2346075X.3508

Palabras clave:

Enamines, Antimicrobials, Epimers, Epoxidation, M-Chloroperbenzoic acid

Resumen

Introduction: Thiophene derivatives are common in a large number of natural compounds. In addition, their biological activity provides great opportunities for synthetic organic chemistry. In particular, cyclopentenylthiophenes have high antimicrobial activity, can affect various inflammatory mechanisms, and can be effective in the treatment of cancer. However, in research, it is essential to first learn how to obtain compounds in pure form and to select such synthesis conditions that, when scaled up and introduced into widespread production, the affordability and safety of the processes would meet the needs of both consumers and pharmaceutical companies. Material and Methods: As an oxidant, meta-chloroperoxybenzoic acid was used, which allowed exploring its oxidative properties and advantages of use in more detail. Results and Discussion: In the course of this work, several cyclopentenylthiophene derivatives were synthesised, the ratio of isomers in the synthesis of these compounds was analysed, and the advantages and disadvantages of the synthesis methods were discussed. On the other hand, there are several issues that require additional research, including the effect of temperature conditions, electrophilicity of substituents and other factors on the course of the epoxidation reaction for cyclopentenylthiophenes. Conclusion: The research of thiophene derivatives is relevant both from the standpoint of exploring electronic effects when substituents with different acceptor properties are introduced into the heterocyclic aromatic system and from the standpoint of medicinal chemistry, as they are interesting biologically active objects with high chemical stability, good penetration of cell membranes, ability to affect enzyme activity, bind to receptors.

Biografía del autor/a

Yurii Klimko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Department of Organic Chemistry and Technology of Organic Compounds

Dmitrii Pisanenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Department of Organic Chemistry and Technology of Organic Compounds

Iryna Koshchii, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Department of Organic Chemistry and Technology of Organic Compounds

Igor Levandovskii, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Department of Organic Chemistry and Technology of Organic Compounds

Referencias

Shah R, Verma PK. Therapeutic importance of synthetic thiophene. Chem Cent J. 2018;12(1):137. https://doi.org/10.1186/s13065-018-0511-5

da Cruz RMD, Mendonça Junior FJB, de Mélo NB, Scotti L, de Araújo RSA, de Almeida RN, de Moura RO. Thiophene-based compounds with potential anti-inflammatory activity. Pharm. 2021;14(7):692. https://doi.org/10.3390/ph14070692

Chawla S, Sharma S, Kashid S, Kumar Verma P, Sapra A. Therapeutic potential of thiophene compounds: a mini-review. Mini Rev Med Chem. 2023. https://doi.org/10.2174/1389557523666230206104257

Auld N, Flood K, Kesharwani T, Cavnar PJ. A study on the cellular and cytotoxic effects of S and Se heterocycles on the myeloid

leukemia cell line PLB-985. Phosphorus Sulfur Silicon Relat Elem. 2022;197(8):876-884. https://doi.org/10.1080/10426507.2022.2085272

Ermiş E, Berber H, Güllü M. Synthesis of some alkylaminothiophene derivatives from 3,4-dibromothiophene and their theoretical calculations. Tetrahedron. 2019;75(33):4577-4590. http://dx.doi.org/10.1016/j.tet.2019.06.049

Jaszczewska‐Adamczak JA, Mlynarski J. Asymmetric epoxidation of enones promoted by dinuclear magnesium catalyst. Adv Synth Catalysis. 2021;363(17):4247-4255. https://doi.org/10.1002/adsc.202100482

Moschona F, Savvopoulou I, Tsitopoulou M, Tataraki M, Rassias G. Epoxide syntheses and ring-opening reactions in drug development. Catalysts. 2020;10(10):1117. https://doi.org/10.3390/catal10101117

Lew HY, Noller CR. A thiophene analog of sulfanilamide. J Am Chem Soc. 1950;72(12):5715-5717. https://doi.org/10.1021/ja01168a092

Caballero R, Cohen B, Gutiérrez M. Thiophene-based covalent organic frameworks: Synthesis, photophysics and light-driven applications. Molecules. 2021;26(24):7666. https://doi.org/10.3390/molecules26247666

Abedinifar F, Babazadeh Rezaei E, Biglar M, Larijani B, Hamedifar H, Ansari S, Mahdavi M. Recent strategies in the synthesis of thiophene derivatives: Highlights from the 2012-2020 literature. Mol Divers. 2021;25(4):2571-2604. https://doi.org/10.1007/s11030-020-10128-9

Xuan DD. Recent achievement in the synthesis of thiophenes. Mini Rev Org Chem. 2021;18(1):110-134. http://dx.doi.org/10.2174/1570193X17999200507095224

Mabkhot YN, Alatibi F, El-Sayed NN, Al-Showiman S, Kheder NA, Wadood A, Rauf A, Bawazeer S, Hadda TB. Antimicrobial activity of some novel armed thiophene derivatives and Petra/Osiris/Molinspiration (POM) analyses. Mol. 2016;21(2):222. https://doi.org/10.3390/molecules21020222

Harit T, Bellaouchi R, Asehraou A, Rahal M, Bouabdallah I, Malek F. Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. J Mol Structure. 2017;1133:74-79. https://doi.org/10.1016/j.molstruc.2016.11.051

Roman, G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm. 2022;355(6):2100462. https://doi.org/10.1002/ardp.202100462

Archna, Pathania S, Chawla PA. Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg Chemistry. 2020;101:104026. https://doi.org/10.1016/j.bioorg.2020.104026

Khosravi K, Naserifar S. Facile epoxidation of α, β-unsaturated ketones with urea-2,2-dihydroperoxypropane as a new oxidant. J Iran Chem Soc. 2017;14(2):323-328. https://doi.org/10.1007/s13738-016-0980-1

Sawano T, Yamamoto H. Regio- and enantioselective substrate-directed epoxidation. Eur J Org Chem. 2020;2020(16):2369-2378. https://doi.org/10.1002/ejoc.201901656

Majdecki M, Tyszka-Gumkowska A, Jurczak J. Highly enantioselective epoxidation of α,β-unsaturated ketones using amide-based cinchona alkaloids as hybrid phase-transfer catalysts. Org Lett. 2020;22(21):8687-8691. https://doi.org/10.1021/acs.orglett.0c03272

Ikuma N, Sumioka S, Asahara H, Oshima T. Regioselective electrophilic addition vs epoxidation of mCPBA towards anti-Bredt olefin of fulleroid. Tetrahedron Lett. 2012;53(28):3581-3584. https://doi.org/10.1016/j.tetlet.2012.05.007

Davies SG, Fletcher AM, Thomson JE. Hydrogen bond directed epoxidation: diastereoselective olefinic oxidation of allylic alcohols and amines. Org Biomol Chem. 2014;12(26):4544-4549. https://doi.org/10.1039/c4ob00616j

Cohen SM, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Smith RL, Bastaki M, Harman CL, McGowen MM, Valerio Jr, LG, Taylor SV. Safety evaluation of substituted thiophenes used as flavoring ingredients. Food Chem Toxicol. 2017;99:40-59. https://doi.org/10.1016/j.fct.2016.10.023

Sagaama A, Issaoui N. Design, molecular docking analysis of an anti-inflammatory drug, computational analysis and intermolecular interactions energy studies of 1-benzothiophene-2-carboxylic acid. Comput Biol Chem. 2020;88:107348. https://doi.org/10.1016/j.compbiolchem.2020.107348

Khilkovets AV, Bilai IM. Study of acute toxicity of new thiophene-containing derivatives of 1,2,4-triazole. Zaporozhye Med J. 2023;25(1):46-49. https://doi.org/10.14739/2310-1210.2023.1.266318

Descargas

Publicado

2023-12-01

Cómo citar

Klimko, Y., Pisanenko, D., Koshchii, I., & Levandovskii, I. (2023). Reacciones de oxidación de derivados de ciclopent-2-en-1-iltiofeno. Innovaciencia, 11(1). https://doi.org/10.15649/2346075X.3508

Número

Sección

Artículo original de investigación e innovacion

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.