Analysis of chromatographic signals from urine samples for prostate cancer analysis using signal processing.

Authors

  • Ronald de Jesús Torres-Flórez Universidad de Pamplona
  • Luís Enrique Mendoza Universidad de Pamplona
  • Zulmary Carolina Nieto-Sánchez Universidad de Francisco de Paula Santander

DOI:

https://doi.org/10.15649/2346030X.573

Keywords:

Gas chromatography, prostate cancer, conditioning, signal analysis, urinal markers.

Abstract

The early stoppage of prostate cancer is of vital importance for the start-up of the treatment of diagnosed patient, it is for them
that the present project has as objective to look for an alternative tool that allows the possibility of presenting a tool of support for detecting
prostate cancer, developing a method of diagnosis based on artificial intelligence, through chromatography signals of flatulence’s come from
urine sample for the study of the area of urology. In this project used mathematical techniques such as SVM and RNA, in order to extract and
verify the pattern found. The algorithm of present project was trained 10 signals chromatography came from urine sample, which five were
obtained of groups of control patients, and five of sick patients. For the development of analisys used Matlab 2014ª student version. The
Obtaining of positive results took with it the application of techniques of pre and processing about chromatography signals, among which are
clipping of interest area, filtering and base line correction whose propose of application allowed the search of typical characteristic patterns of
each group of patients, due to the presence of abnormal or cancerous cells in the prostate. The system was appreciated, doing used of blind dates
and the result contrasted with the expert doctor in the area, allowing of this manner to arrive to punctual conclusions. The software specificity
was 92.86%, rate obtained in the validation of software, whose signals entered come from of urine sample of analyzed patients, but different
from the ones used to the treatment.

Author Biographies

Ronald de Jesús Torres-Flórez, Universidad de Pamplona

Universidad de Pamplona

Luís Enrique Mendoza, Universidad de Pamplona

Universidad de Pamplona

Zulmary Carolina Nieto-Sánchez, Universidad de Francisco de Paula Santander

Universidad de Francisco de Paula Santander

References

J. Morote, X. Maldonado y R. Morales, «Prostate cancer,» Elsevier, vol. I, nº 1, p. 7, 2016.

A. Jiménez Pacheco, J. M. Peinado Herreros y M. C. Iribar Ibabe, «Evaluacion del en el diagnóstico actual del cáncer de prostata. Desarrollo de nuevos Biomarcadores Urinarios.,» vol. 96, p. 10, 2011.

R. Marbot Ramada y I. Martín Hernández, «Análisis del aliento: un método promisorio para el diagnóstico del cáncer y factores desencadenantes,» Revista CENIC Ciencias Biológicas, vol. XXXIX, nº 1, p. 7, 2008.

C. Ramos G. y J. Fullá O., Detección Precoz De Cáncer De Próstata, Departamento de Urología. Clínica las Condes, 2013.

M. Truong, B. Yang y D. Jarrard, «Towards the Detection of Prostate Cancer in Urine: A Critical analysis,» The Journal of Urology, vol. I, nº 1, p. 21, 2012.

S. Digital, «Lenguas electrónicas, sistema no invasivo que detecta cáncer de próstata y de vejiga.,» Consalud, Madrid, 2017.

W. Filipiak , A. Sponring , A. Filipiak, C. Ager, J. Schubert y W. Miekisch , «TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers,» 2010.

J. Cornu, G. Cancel-Tassin, V. Ondet, C. Girardet y O. Cussenot , «Olfactory Detection of Prostate Cancer by Dogs Sniffi ng Urine: A Step Forward in Early Diagnosis,» Eur Urol, 2011.

G. Taverna , L. Tidu, F. Grizzi , V. Torri, A. Mandressi, P. Sardella , G. La Torre, G. Cocciolone , M. Seveso, G. Giusti, R. Hurle , A. Santoro y P. Graziotti , «Highly-Trained Dogs’ Olfactory System Detects Prostate Cancer in Urine Samples,» The Journal of Urology, vol. I, nº 1, p. 28, 2014.

A. Roine, . E. Veskimäe, A. Tuokko, P. Kumpulainen , . J. Koskimäki , A. Keinänen Tuom, R. Häkkinen Merja , J. Vepsäläinen , T. Paavonen , . J. Lekkala , . T. Lehtimäki , . L. Tammela Teuvo y K. J. Oksala Niku , «Detection of Prostate Cancer by an Electronic Nose: Proof of principle study,» Science Direct, 2015.

F. C. Romero Segura, Estudio preliminar de posibles Biomarcadores del Cáncer de Próstata, Caracas: Universidad Central de Venezuela. Facultad de Ciencias, 2014.

A. Sreekumar , I. Poisson , T. Rajendiran, A. Khan , Q. Cao , J. Yu , B. Laxman, R. Mehra , R. Lonigro , Y. Li , M. Nyati, A. Ahsan , . S. Kalyana-Sundaram, B. Han, X. Cao , J. Byun, J. Wei , . S. Varambally, C. Beecher y A. Chinnaiyan, «Metabolomic profiles delineate potential role sarcosine in prostate cancer progression,» Nature, 2009.

M. Shamsipur, M. Taghi y M. Babri, «Quantification of candidate prostate cancer metabolite biomarkers in urine using dispersive derivatization liquid–liquid microextraction followed by gas and liquid chromatography–mass spectrometry,» Journal of Pharmaceutical and Biomedical Analysis, pp. 81-81:65-75, 2013.

E. Gómez Sotomayor y B. Serrano Ortega, Urología Básica para Estudiantes de Medicina, Primera ed., Loja: Unidad de Comunicación e Imagen Institucional, 2016, p. 236.

L. H. Alba, M. Alba, D. Ortiz S., M. Otálora E. y D. Roselli, Análisis De Los Registros Individuales De Prestación De Servicios De Salud (Rips), Bogotá: Medicina: Cancer en Colombia, 2016.

F. Lara Rosano, Fundamento de redes neuronales artificiales, Unam.

R. Torres Cabeza , O. Llanes Santiago, E. Barrero Viciedo y V. Moreno Vega, «Faults Diagnostic using Hopfield Artificial Neural Network in front of Incomplete Data,» Journal of Engineering and Technology for Industrial Applications, vol. IV, nº 13, pp. 77-82, 2018.

E. J. Carmona Suárez, Tutorial sobre Máquinas de Vectores Soporte (SVM)., Madrid: Dpto. de Inteligencia Artificial, Universidad Nacional de Educación a Distancia., 2014.

J. L. Semmlow, Biosignal and Medical Image Processing, Segunda ed., vol. I, New York: Taylor & Grancis Group, 2008, p. 450.

O. M. d. l. Salud, «Informe de la 58a Asamblea Mundial de la Salud A58/16.,» Organización Mundial de la Salud, 2005.

P. C. Walsh y J. F. Worthington, The prostate, a guide for men and the women who love them, New York: Warner Books, 1997.

S. Dijkstra, I. L. Birker, F. P. Smit, G. H. J. M. Leyten, T. M. de Reijke, F. A. M. Peter y I. M. van Oort, «Prostate Cancer Biomarker Profiles in Urinary,» Investigative Urology, vol. I, nº 1, p. 7, 2013.

Published

2019-07-01

How to Cite

[1]
R. de J. . Torres-Flórez, L. E. . Mendoza, and Z. C. . Nieto-Sánchez, “Analysis of chromatographic signals from urine samples for prostate cancer analysis using signal processing”., AiBi Revista de Investigación, Administración e Ingeniería, vol. 7, no. 2, pp. 8–15, Jul. 2019.

Issue

Section

Research Articles

Altmetrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)