Application of machine learning for brain tumor diagnosis using magnetic resonance images: a comparative analysis

Autores/as

DOI:

https://doi.org/10.15649/2346030X.3630

Palabras clave:

resonancia magnética, máquina de vectores soporte, bosque aleatorio, red neuronal convolucional, tumor cerebral, aprendizaje automático

Resumen

A brain tumor is an abnormal growth of cells that may lead to cancer. MRI scans are the conventional method of diagnosing brain tumors. This paper investigates the potential of machine learning (ML) in interpreting MRI images for brain tumors. The study described applies and evaluates three different methods. The study applied and evaluated three different methods for identifying brain tumors: a self-defined a support vector machine (SVM), a Random forest (RF), and a convolution neural network (CNN). The Bra-TS 2018 dataset is used in this study on MRI brain images containing images of glioma, meningioma, pituitary, and no tumors. Python 3.11 was used for interpreting MRI images for brain tumors. The accuracy of the proposed CNN, RF, and SVM were found to be 99.29%, 99.06%, and 98.36%, respectively. The CNN approach has higher accuracy than innovative techniques.

Referencias

S. A. Qureshi et al., “Intelligent ultra-light deep learning model for multi-class brain tumor detection,” Appl. Sci., vol. 12, no. 8, p. 3715, 2022 [doi: 10.3390/app12083715].

M. Arabahmadi et al., “Deep learning for smart Healthcare—A survey on brain tumor detection from medical imaging,” Sensors (Basel), vol. 22, no. 5, p. 1960, 2022 [doi: 10.3390/s22051960].

G. S Tandel et al., “A review on a deep learning perspective in brain cancer classification,” Cancers, vol. 11, no. 1, p. 111, 2019 [doi: 10.3390/cancers11010111].

D. V. Gore and V. Deshpande, “Comparative study of various techniques using deep Learning for brain tumor detection” in International conference for emerging technology (INCET), vol. 2020. IEEE, 2020, Jun., pp. 1-4 [doi: 10.1109/INCET49848.2020.9154030].

V. Y. Borole et al., “Image processing techniques for brain tumor detection: A review,” Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS), vol. 4, no. 5, p. 2, 2015.

J. Amin et al., “Big data analysis for brain tumor detection: Deep convolutional neural networks,” Future Gener. Comput. Syst., vol. 87, pp. 290-297, 2018 [doi: 10.1016/j.future.2018.04.065].

J. B. Iorgulescu et al., “Molecular biomarker-defined brain tumors: Epidemiology, validity, and completeness in the United States,” Neuro-Oncology, vol. 24, no. 11, pp. 1989-2000, 2022 [doi: 10.1093/neuonc/noac113].

M. C. Mabray et al., “Modern brain tumor imaging,” Brain Tumor Res. Treat., vol. 3, no. 1, pp. 8-23, 2015 [doi: 10.14791/btrt.2015.3.1.8].

R. Ranjbarzadeh et al., “Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images,” Sci. Rep., vol. 11, no. 1, p. 10930, 2021 [doi: 10.1038/s41598-021-90428-8].

Available at: http://www.aans.org, n.d., “Neurosurgical contacts and resources for press and media” [Online]. Available at: https://www.aans.org/en/Media/.

S. M. Kulkarni and G. Sundari, “A framework for brain tumor segmentation and classification using deep learning algorithm,” IJACSA, vol. 11, no. 8, 2020 [doi: 10.14569/IJACSA.2020.0110848].

A. Anaya-Isaza et al., “Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network,” Eur. J. Rad. Open, vol. 10, p. 100484, 2023 [doi: 10.1016/j.ejro.2023.100484].

S. Bakas et al., “Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features,” Sci. Data, vol. 4, no. 1, pp. 170117, 2017 [doi: 10.1038/sdata.2017.117].

J. Liu et al., “Transition Net: 2D backbone to segment 3D brain tumor,” Biomed. Signal Process. Control, vol. 75, p. 103622, 2022 [doi: 10.1016/j.bspc.2022.103622].

A. Khosravanian et al., “Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method,” Comput. Methods Programs Biomed., vol. 198, p. 105809, 2021 [doi: 10.1016/j.cmpb.2020.105809].

Z. Tang et al., “Multi-atlas segmentation of MR tumor brain images using low-rank based image recovery,” IEEE Trans. Med. Imaging, vol. 37, no. 10, pp. 2224-2235, 2018 [doi: 10.1109/TMI.2018.2824243].

M. K. Abd-Ellah et al., “A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned,” Magn. Reson. Imaging, vol. 61, pp. 300-318, 2019 [doi: 10.1016/j.mri.2019.05.028].

A. K. Sharma et al., “A survey on machine learning based brain retrieval algorithms in medical image analysis,” Health Technol., vol. 10, no. 6, pp. 1359-1373, 2020 [doi: 10.1007/s12553-020-00471-0].

S. Ali et al., “A comprehensive survey on brain tumor diagnosis using deep learning and emerging hybrid techniques with multi-modal MR image,” Arch. Comp. Methods Eng., vol. 29, no. 7, pp. 4871-4896, 2022 [doi: 10.1007/s11831-022-09758-z].

M. Arabahmadi et al., “Deep learning for smart Healthcare—A survey on brain tumor detection from medical imaging,” Sensors (Basel), vol. 22, no. 5, p. 1960, 2022 [doi: 10.3390/s22051960].

T. Magadza and S. Viriri, “Deep learning for brain tumor segmentation: A survey of state-of-the-art,” J. Imaging, vol. 7, no. 2, p. 19, 2021 [doi:10.3390/jimaging7020019].

S. Maqsood et al., “Multi-modal brain tumor detection using deep neural network and multiclass SVM,” Medicina (Kaunas), vol. 58, no. 8, p. 1090, 2022 [doi:10.3390/medicina58081090].

E. S. Biratu et al., “A survey of brain tumor segmentation and classification algorithms,” J. Imaging, vol. 7, no. 9, p. 179, 2021 [doi:10.3390/jimaging7090179].

M. A. Khan et al., “Brain tumor detection and classification: A framework of marker‐based watershed algorithm and multilevel priority features selection,” Microsc. Res. Tech., vol. 82, no. 6, pp. 909-922, 2019 [doi:10.1002/jemt.23238].

K. Asano et al., “Brain tumor–related epilepsy and risk factors for metastatic brain tumors: Analysis of 601 consecutive cases providing real-world data,” J. Neurosurg., vol. 136, no. 1, pp. 76-87, 2022 [doi:10.3171/2020.11.JNS202873].

M. J. van den Bent et al., “A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics,” Neuro-Oncology, vol. 19, no. 5, pp. 614-624, 2017 [doi:10.1093/neuonc/now277].

H. S. Kim and D. Y. Lee, “Nanomedicine in clinical photodynamic therapy for the treatment of brain tumors,” Biomedicines, vol. 10, no. 1, p. 96, 2022 [doi:10.3390/biomedicines10010096].

A. A. Asiri et al., “Exploring the power of deep learning: Fine-tuned vision transformer for accurate and efficient brain tumor detection in MRI scans,” Diagnostics (Basel), vol. 13, no. 12, p. 2094, 2023 [doi:10.3390/diagnostics13122094].

Y. Chang et al., “Dpafnet: A residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation,” Biomed. Signal Process. Control, vol. 79, p. 104037, 2023 [doi:10.1016/j.bspc.2022.104037].

Z. Zhu et al., “Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI,” Inf. Fusion, vol. 91, pp. 376-387, 2023 [doi:10.1016/j.inffus.2022.10.022].

S. Saeedi et al., “MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques,” BMC Med. Inform. Decis. Mak., vol. 23, no. 1, pp. 1, 2023.

M. M. Zahoor et al., “A new deep hybrid boosted and ensemble learning-based brain tumor analysis using MRI,” Sensors (Basel), vol. 22, no. 7, p. 2726, 2022 [doi:10.3390/s22072726].

A. Younis et al., “Brain tumor analysis using deep learning and VGG-16 ensembling learning approaches,” Appl. Sci., vol. 12, no. 14, p. 7282, 2022 [doi:10.3390/app12147282].

A. M. Gab Allah et al., “Classification of brain MRI tumor images based on deep learning PGGAN augmentation,” Diagnostics (Basel), vol. 11, no. 12, p. 2343, 2021 [doi:10.3390/diagnostics11122343].

A. Arora et al., “Brain tumor segmentation of mri images using processed image driven u-net architecture,” Computers, vol. 10, no. 11, p. 139, 2021 [doi:10.3390/computers10110139].

P. R. Kshirsagar et al., “MRI image based brain tumor detection using machine learning,” Test Eng. Manag., vol. 81, pp. 3672-3680, 2020.

G. Raut et al., “Deep learning approach for brain tumor detection and segmentation” in International Conference on Convergence to Digital World-Quo Vadis (ICCDW). IEEE, 2020, pp. 1-5 [doi:10.1109/ICCDW45521.2020.9318681].

G. Çınarer and B. G. Emiroğlu, “Classification of brain tumors by machine learning algorithms” in 3rd international symposium on multidisciplinary studies and innovative technologies (ISMSIT). IEEE, 2019, pp. 1-4.

X. Zhao et al., “A deep learning model integrating FCNNs and CRFs for brain tumor segmentation,” Med. Image Anal., vol. 43, pp. 98-111, 2018 [doi:10.1016/j.media.2017.10.002].

J. A. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: A practical introduction,” BMC Med. Res. Methodol., vol. 19, pp. 1, 2019.

Q. Zhao et al., “Longitudinal self-supervised learning,” Med. Image Anal., vol. 71, p. 102051, 2021 [doi:10.1016/j.media.2021.102051].

X. Song et al., “Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis,” Int. J. Med. Inform., vol. 151, p. 104484, 2021 [doi:10.1016/j.ijmedinf.2021.104484].

H. Habehh and S. Gohel, “Machine learning in healthcare,” Curr. Genomics, vol. 22, no. 4, p. 291-300, 2021 [doi:10.2174/1389202922666210705124359].

J. Waring et al., “Automated machine learning: Review of the state-of-the-art and opportunities for healthcare,” Artif. Intell. Med., vol. 104, p. 101822, 2020 [doi:10.1016/j.artmed.2020.101822].

R. M. Battleday et al., “From convolutional neural networks to models of higher‐level cognition (and back again),” Ann. N. Y. Acad. Sci., vol. 1505, no. 1, pp. 55-78, 2021 [doi:10.1111/nyas.14593].

A. Argentiero et al., “The applications of artificial intelligence in cardiovascular magnetic resonance—A comprehensive review,” J. Clin. Med., vol. 11, no. 10, p. 2866, 2022 [doi:10.3390/jcm11102866].

B. Mahesh, “Machine learning algorithms-a review,” Int. J. Sci. Res. (IJSR), vol. 9, no. 1, pp. 381-386, 2020.

R. Mothkur and K. M. Poornima, “Machine learning will transfigure medical sector: A survey” in International Conference on Current Trends towards Converging Technologies (ICCTCT), vol. 2018. IEEE, 2018, Mar., pp. 1-8 [doi:10.1109/ICCTCT.2018.8551134].

T. S. Bra, 2018, “Multimodal brain tumor segmentation challenge. (n.d.)”. Available at: https://ioft-data.engin.umich.edu/brats-2018-dataset/. University of Michigan. Institute for Data Science [Online].

S. Saeedi et al., “MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques,” BMC Med. Inform. Decis. Mak., vol. 23, no. 1, pp. 1, 2023.

M. S. I. Khan et al., “Accurate brain tumor detection using deep convolutional neural network,” Comp. Struct. Biotechnol. J., vol. 20, pp. 4733-4745, 2022 [doi:10.1016/j.csbj.2022.08.039].

M. I. Mahmud et al., “A deep analysis of brain tumor detection from mr images using deep learning networks,” Algorithms, vol. 16, no. 4, p. 176, 2023 [doi:10.3390/a16040176].

Descargas

Publicado

02-12-2024

Cómo citar

[1]
P. R. kumar-Manilal y D. J. Shah, «Application of machine learning for brain tumor diagnosis using magnetic resonance images: a comparative analysis», AiBi Revista de Investigación, Administración e Ingeniería, vol. 12, n.º 1, pp. 139–151, dic. 2024.

Número

Sección

Artículos de Investigación

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.