Nanotubos de carbono en la terapia fototérmica contra el cáncer
DOI:
https://doi.org/10.15649/2346075X.209Palabras clave:
Nanotubos de carbono, terapia fototérmica, infrarrojo cercano, radiofrecuencia, cáncer.Resumen
La preparación de nuevos nanomateriales ha permitido ampliar el rango de aplicaciones en las ciencias biomédicas. Dentro
de este grupo se destacan los nanotubos de carbono los cuales son estructuras cilíndricas de tamaño nanométrico cuyas
propiedades fisicoquímicas los han convertido en herramientas importantes en la terapia contra el cáncer. Su aplicación incluye
la entrega selectiva de fármacos y la terapia fototérmica. El objetivo de este artículo es revisar el estado del arte de estudios
recientes dirigidos a la destrucción selectiva de células cancerígenas por medio de la terapia fototérmica mediante la activación
de nanotubos de carbono con luz del infrarrojo cercano u ondas de radiofrecuencia. Esta revisión además aportará información
relevante para la utilización de nuevas alternativas en la terapia contra otras enfermedades diferentes al cáncer mediante el empleo
de nanotubos de carbono irradiados e irradiados con radiaciones inocuas para el cuerpo humano.
Referencias
Boyle P, L. B. (2008). “World Cancer Report.” WHO.
(2) Ji SR, L. C., Zhang B, Yang F, Xu J, Long J, Jin C, Fu D, Ni Q, Yu X. (2010). “Carbon nanotubes in cancer diagnosis and therapy “ Biochimica et Biophysica Acta 1806(1): 29-35.
(3) Fukumori Y, I. H. (2006). “Nanoparticles for cancer therapy and diagnosis.” Advanced Power Technology 17: 1-28.
(4) Bianco A, K. K., Prato M. (2005). Applications of carbon nanotubes in drug delivery.” Current Opinion in Chemical Biology 9: 674-679.
(5) Xiao Y, G. X., Taratula O, Treado S, Urbas A, Holbrook D, Cavicchi R, Avedisian T, Mitra S, Savla R, Wagner P, Srivastava S, He H. (2009). “Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells.” BMC Cancer 9(352): 1471-2407.
(6) Panchapakesan B, L. S., Sivakumar K, Teker K, Cesarone G, Wickstrom E. (2005). “Single-Wall Carbon Nanotube Nanobomb Agents for Killing Breast Cancer Cells.” NanoBiotechnology 1(2): 133-139.
(7) Moon H, L. S., Choi H. (2009). “In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes.” ACS Nano 3(11): 3707-3713.
(8) Gannon C, C. P., Yakobson B, Cognet L, Kanzius J, Kittrell C, Weisman R, Pasquali M, Schmidt H, Smalley R, Curley S. (2007). “Carbon Nanotube-enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field.” Cancer 110(12): 2654-2665.
(9) Ijima S. (1991). “Helical microtubules of graphitic carbon.” Nature 354: 56-58.
(10) Bhushan B. (2007). Introduction to Carbon Nanotubes. Handbook of Nanotechnology Bhushan. Berlin, Springer: 49-63.
(11) Hong H, Gao T, Cai W. (2009). “Molecular imaging with singlewalled carbon nanotubes.” Nano Today 4: 252-261.
(12) Yu X, M. B., Patel V. (2006). “Carbon Nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers.” Journal of American Chemical Society 128: 11199–11205.
(13) Okunoa J, Maehashi K, Kerman K. (2007). ”Label-free immunosensor for prostatespecific antigen based on single-walled carbon nanotube array-modified microelectrodes.” Biosensors and Bioelectronics 22: 2377-2381.
(14) Ou C, Yuan R, Chai Q. (2007). “A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles–multiwalled carbon nanotubes–thionine multilayer films on polyelectrolyte surface.” Analytical Chemical Acta 603: 205-213.
(15) Lin J, He C, Zhang L. (2009). “Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film.” Analytical Biochemistry 384: 130-135.
(16) Bi S, Zhou H, Zhang S. (2009). “Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker.” Biosensors and Bioelectronics 24: 29612966
(17) Wu W, Pastorin G, Klumpp C, Benincasa M, Briand JP, Gennaro R, Prato M, Bianco A. (2005). “Targeted delivery of amphotericin B to cells using functionalised carbon nanotubes.” Angewandte Chemie International 44 (39): 6358:6352
(18) Yinghuai Z, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005). “Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery.” Journal of American Chemical Society 127: 9875-9880.
(19) Pastorin G, Wieckowski S, Briand J, Kostarelos K, Prato M, Bianco A. (2006). “Double functionalisation of carbon nanotubes for multimodal drug delivery.” Chemical Communications: 1182-1184. 20. Heister E, Neves V. (2009). “Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy.” Carbon 47: 2152-2160.
(20) Chen J, Chen S. Zhao R. (2008). “Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery.” Journal of American Chemical Society 130: 16778-16785.
(21) Bhirde A, Patel V. Gavard J. (2009). “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery.” ACS Nano 3: 307-316.
(22) Dhar S, Liu J, Thomale J. (2008). “Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device.” Journal of American Chemical Society 130: 11467-11476.
(23) Liu Z, Sun X. Nakayama N, Dai J. (2007). “Supramolecular chemistry on watersoluble carbon nanotubes for drug loading and delivery.” ACS Nano 1: 50-56.
(24) Zhang X, Meng L, Lu Q. (2009). “Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes.” Biomaterials 30.
(25) Liu Z, Cheng C, Davis S, Sherlock S, Cao Q, Chen X, Dai H. (2008). “Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res. 68 (2008) 6652–6660.” Cancer Research(68): 6652-6660.
(26) Chen J, Chen S, Zhao R, Kuznetsova V, Wong S, Ojima I. (2008). “Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor targeted drug delivery”. Journal of American Chemical Society 130: 16778-16785.
(27) Morgan J, Oseroff A. (2001). “Mitochondria-based photodynamic anti-cancer therapy.” Advanced Drug Delivery Reviews 49: 71-86.
(28) Zhu Z, Tang Z, Phillips J. (2008). “Regulation of singlet oxygen generation using single-walled carbon nanotubes.” Journal of American Chemical Society 130: 10856-10857.
(29) Cherukuri P, Curley S. (2010). “Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells.” Methods in Molecular Biology 624: 359-373.
(30) Ghosh S, Dutta S, Gomes E, Carroll D, D´Agostino R, Olson J, Guthold M, Gmeiner W. (2009). “Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes.” ACS Nano3(9): 2667-2673.
(31) Liang P, Wang Y. (2007). “Microwave Ablation of Hepatocellular Carcinoma.” Oncology 72: 124-131.
(32) Kam NW, Wisdom JA, Dai H. (2005). “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.” PNAS 102(33): 11600-11605.
(33) Xu Z, Hu P, Wang S, Wang X. (2008). “Biological functionalization and fluorescent imaging of carbon nanotubes.” Applied Surface Science 254: 1915-1918.
(34) Xiao Y, Gao X, Taratula O, Treado S, Urbas A, Holbrook D, Cavicchi R, A
(35) Marches R, Chakravarty P., Musselman I, Bajaj P, Azad R, Pantano P, Draper R, Vitetta E. (2009). “Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies.” International Journal of Cancer 125 (12): 29702977.
(36) Levi-Polyachenko N, Merkel E., Jones B, Carroll D, Stewart J. (2009). “Rapid Photothermal Intracellular Drug Delivery Using Multiwalled Carbon Nanotubes.” Molecular Pharmaceutics 6(4): 1092-1099.
(37) Stewart J, Shen P., Levine E. (2005). “Intraperitoneal Hyperthermic Chemotherapy for Peritoneal Surface Malignancy: Current Status and Future Directions.” Annals of Surgical Onoclogy 12: 765-777.
(38) Maris J, Matthay K. (1999). “Molecular Biology of Neuroblastoma.” Journal of Clinical Oncology 17(7): 2264-2279. 40. Wang C, Huang Y. Chang C, Hsu W, Peng C. (2009). “In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody.” Nanotechnology 20: 1-7.
(39) 41. Burlaka A, Lukin S, Prylutska S, Remeniak O, Prylutskyy Y, Shubat M, Maksimenko S, Ritter U, Scharff P. (2010). “Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: invitro studies.” Experimental Oncology 32(1): 48-50.
(40) 42. Torti S, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti F, Akman S, Liu J, Ajayan P, Nalamasu O, Carroll D. (2007). “Thermal ablation therapeutics based on CNx multi-walled nanotubes.” International Journal of Nanomedicine 2(4): 707-714.
(41) 43. Maksimenko S, Slepyan. G, Nemilentsau A, Shuba M. (2008). “Carbon nanotube antenna: Far-field, near-field and thermal-noise properties.” Physica E 40: 2360-2364.
(42) 44. Arciero C, Sigurdson E. (2008). “Diagnosis and treatment of metastatic disease to the liver.” Seminars in Oncology 35: 147-159
(43) 45. Durney C, Massoudi H, Iskander M. (1986). Radiofrequency Radiation Dosimetry Handbook. A. F. S. o. A. M. Press. Texas, Brooks City.
(44) 46. Gannon C, Cherukuri P, Yakobson B, Cognet L, Kanzius J, Kittrell C, Weisman R, Pasquali M, Schmidt H, Smalley R, Curley S. (2007). “Carbon Nanotube-enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field.” Cancer 110(12): 2654-2665.
(45) 47. Bernardi P. (2003). “Specific Absorption Rate and Temperature Elevation in a Subject Exposed in the Far-Field of Radio-Frequency Sources Operating in the 10–900-MHz Range.” IEEE Transactions on Biomedical Engineering 50(3): 295-304.
(46) 48. Moran C, Wainerdi S, Cherukuri T, Kitrell C, Wiley B, Nicholas N, Curley S, Kanzius J, Cherukuri P. (2009). “Size-Dependent Joule Heating of Gold Nanoparticles Using Capacitively Coupled Radiofrequency Fields.” Nano Research 2: 400-405.
Descargas
Publicado
Cómo citar
Número
Sección
Altmetrics
Descargas
Licencia
Todos los artículos publicados en esta revista científica están protegidos por los derechos de autor. Los autores retienen los derechos de autor y conceden a la revista el derecho de primera publicación con el trabajo simultáneamente licenciado bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) que permite compartir el trabajo con reconocimiento de autoría y sin fines comerciales.
Los lectores pueden copiar y distribuir el material de este número de la revista para fines no comerciales en cualquier medio, siempre que se cite el trabajo original y se den crédito a los autores y a la revista.
Cualquier uso comercial del material de esta revista está estrictamente prohibido sin el permiso por escrito del titular de los derechos de autor.
Para obtener más información sobre los derechos de autor de la revista y las políticas de acceso abierto, por favor visite nuestro sitio web.