Producción de biochar a partir de cáscara de palma, cisco de café y contenido ruminal bovino vía pirólisis y su uso en la remoción azul de metileno en solución acuosa

Autores/as

  • Franci Nathalie Gómez Jaimes Universidad de Santander, Facultad de Ciencias Exactas, Naturales y Agropecuarias, Bucaramanga 680003, Colombia
  • Sergio Jonayder Muñoz Ríos Universidad Industrial de Santander
  • Laura Maileth Rey Hernández Industrias Acuña Ltda. INAL
  • Katherin Natalia Acuña Rodríguez Industrias Acuña Ltda. INAL
  • Ángel Custodio Acuña Llanes Industrias Acuña Ltda. INAL

DOI:

https://doi.org/10.15649/2346075X.3550

Palabras clave:

Cáscara de palma, Biochar, Cisco de café, Contenido ruminal bovino, Biocarbón, Pirólisis

Resumen

Introducción: La gran cantidad de biomasa residual derivada de la actividad agroindustrial constituye una problemática ambiental que requiere del uso de estrategias de aprovechamiento que fortalezcan las cadenas productivas en el marco de la producción y consumo responsables. Objetivo: En esta investigación se realizó la producción de biochar a partir de la pirólisis de una mezcla de cáscara de palma (40%), cisco de café (40%) y contenido ruminal bovino (20%) para evaluar su capacidad de remoción de azul de metileno en solución acuosa. Materiales y métodos: La pirólisis de la mezcla se realizó a una temperatura de 750°C, con una tasa de calentamiento de 15°C/min, durante 2 h. El producto obtenido se denominó biochar FT-750 al cual se determinó su composición elemental, contenido de cenizas y área superficial. Finalmente, se evaluó la capacidad de remoción de azul de metileno en solución acuosa (250 mg/L) a diferentes valores de pH (2-10). Resultados y discusión: El biochar FT–750 tuvo un contenido de carbono de 73,6%, un contenido de cenizas de 16,1% y un área superficial de 0,88 m2/g. Con estas características, se alcanzó una remoción de azul de metileno del 37% a pH 10. Los resultados se ajustaron al modelo cinético de pseudo-primer orden y a la isoterma de Freundlich. Conclusiones: La pirólisis es una estrategia efectiva de transformación de biomasa residual como la cáscara de palma, el cisco de café y el contenido ruminal bovino para producir un biochar útil como adsorbente en la remoción de contaminantes en solución acuosa

Referencias

Castro-Garzon H, Contreras EJ, Rodriguez JP. Análisis ambiental: impactos generados por los residuos agrícolas en el municipio del Dorado (Meta, Colombia). Espacios [Internet]. 2020 Oct 8;41(38):42–50. Available from: https://revistaespacios.com/a20v41n38/a20v41n38p05.pdf

Vanegas Escudero AL. Alternativas ambientales para el aprovechamiento de la biomasa residual de palma aceitera (elaeis guineensis) en procesos industriales y agrícolas. Publicaciones e Investig [Internet]. 2019 Jul 2;13(2):77–92. Available from: https://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/3467

Agronegocios. Más de 92% de la palma de aceite en Colombia se siembra en terrenos de uso previo [Internet]. 2022. Available from: https://www.agronegocios.co/agricultura/mas-de-92-de-la-palma-de-aceite-en-colombia-se-siembra-en-terrenos-de-uso-previo-3291687

Fedepalma. Buen comportamiento en producción de aceite de palma y récord de ventas en mercado local caracterizan palmicultura colombiana en agosto de 2023 [Internet]. 2023. Available from: https://fedepalma.org/noticias/buen-comportamiento-en-produccion-de-aceite-de-palma-y-record-de-ventas-en-mercado-local-caracterizan-palmicultura-colombiana-en-agosto-de-2023/#:~:text=En agosto de 2023%2C la,de acuerdo con su estacionalidad.

Uchegbulam I, Momoh EO, Agan SA. Potentials of palm kernel shell derivatives: a critical review on waste recovery for environmental sustainability. Clean Mater [Internet]. 2022 Dec;6:100154. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772397622001149

Federación Nacional de Cafeteros de Colombia. Producción anual de café de Colombia cierra 2022 en 11,1 millones de sacos [Internet]. 2022. Available from: https://federaciondecafeteros.org/wp/listado-noticias/produccion-anual-de-cafe-de-colombia-cierra-2022-en-111-millones-de-sacos/

Sectorial. Informes Sectorial Ganadero [Internet]. 2023. Available from: https://bibliotecadigital.ccb.org.co/server/api/core/bitstreams/8084ec30-c67b-4ad8-8ccd-755a0c8e0ac9/content

Ossa Henao DM, Chica Arrieta EL, Colorado Granda AF, Amell Arrieta AA, Unfried-Silgado J. Characterization of bovine ruminal content focusing on energetic potential use and valorization opportunities. Heliyon [Internet]. 2023 Feb;9(2):e13408. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405844023006151

Mašek O. Biochar in thermal and thermochemical biorefineries-production of biochar as a coproduct. In: Handbook of Biofuels Production: Processes and Technologies: Second Edition. 2016. p. 655–71. https://doi.org/10.1016/B978-0-08-100455-5.00021-7

Pecha B, Garcia-Perez M. Pyrolysis of Lignocellulosic Biomass. In: Bioenergy. Elsevier; 2015. p. 413–42. https://doi.org/10.1016/B978-0-12-407909-0.00026-2

Nachenius RW, Ronsse F, Venderbosch RH, Prins W. Biomass Pyrolysis. In: Advances in Chemical Engineering [Internet]. 1st ed. Elsevier Inc.; 2013. p. 75–139. Available from: http://dx.doi.org/10.1016/B978-0-12-386505-2.00002-X

Wang J, Wang S. Preparation, modification and environmental application of biochar: A review. J Clean Prod. 2019;227:1002–22. https://doi.org/10.1016/j.jclepro.2019.04.282

Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. Biochar modification to enhance sorption of inorganics from water. Vol. 246, Bioresource Technology. Elsevier Ltd; 2017. p. 34–47. https://doi.org/10.1016/j.biortech.2017.07.082

Uchegbulam I, Momoh EO, Agan SA. Potentials of palm kernel shell derivatives: a critical review on waste recovery for environmental sustainability. Clean Mater [Internet]. 2022 Dec;6(April):100154. Available from: https://doi.org/10.1016/j.clema.2022.100154

Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng [Internet]. 2022 Dec;16(September):100678. Available from: https://doi.org/10.1016/j.rineng.2022.100678

Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. Norma Técnica Colombiana [NTC] 5167 [Internet]. Icontec Internacional. 2011. p. 1–51. Available from: https://www.icontec.org//

[ICONTEC] IC de NT y C. Norma Técnica Colombiana [NTC] 4657. 1999. p. 13.

Güleç F, Williams O, Kostas ET, Samson A, Stevens LA, Lester E. A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel [Internet]. 2022;330(May):125428. Available from: https://doi.org/10.1016/j.fuel.2022.125428

Sangsuk S, Napanya P, Tasen S, Baiya P, Buathong C, Keeratisoontornwat K, et al. Production of non-activated biochar based on Biden pilosa and its application in removing methylene blue from aqueous solutions. Heliyon [Internet]. 2023 May;9(5):e15766. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405844023029730

Sarkar DK. Fuels and Combustion. In: Thermal Power Plant [Internet]. Elsevier; 2015. p. 91–137. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128015759000032

Montoya JI, Chejne-Janna F, Garcia-Pérez M. Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study. DYNA. 2015 Aug 1;82(192):239–48.

Haryati Z. Pilot scale biochar production from palm kernel shell (pks) in a fixed bed allothermal reactor. J Oil Palm Res [Internet]. 2018 Sep 3;30(3):485–94. Available from: http://jopr.mpob.gov.my/pilot-scale-biochar-production-from-palm-kernel-shell-pks-in-a-fixed-bed-allothermal-reactor/

Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem [Internet]. 2013 Feb;57:401–10. Available from: http://dx.doi.org/10.1016/j.soilbio.2012.10.025

Chen T, Zhang Y, Wang H, Lu W, Zhou Z, Zhang Y, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol [Internet]. 2014 Jul;164:47–54. Available from: http://dx.doi.org/10.1016/j.biortech.2014.04.048

Amador C, Martin de Juan L. Strategies for Structured Particulate Systems Design. In: Computer Aided Chemical Engineering [Internet]. Elsevier; 2016. p. 509–79. Available from: http://dx.doi.org/10.1016/B978-0-444-63683-6.00019-8

Dominguez EL, Uttran A, Loh SK, Manero M-H, Upperton R, Idris Tanimu M, et al. Characterisation of industrially produced oil palm kernel shell biochar and its potential as slow release nitrogen-phosphate fertilizer and carbon sink. Mater Today Proc [Internet]. 2020;31(xxxx):221–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320336993

Munar-Florez DA, Varón-Cardenas DA, Ramírez-Contreras NE, García-Núñez JA. Adsorption of ammonium and phosphates by biochar produced from oil palm shells: Effects of production conditions. Results Chem [Internet]. 2021 Jan;3(June 2020):100119. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211715621000242

Dechapanya W, Khamwichit A. Biosorption of aqueous Pb(II) by H3PO4-activated biochar prepared from palm kernel shells (PKS). Heliyon [Internet]. 2023 Jul;9(7):e17250. Available from: https://doi.org/10.1016/j.heliyon.2023.e17250

Vu N-T, Do K-U. Insights into adsorption of ammonium by biochar derived from low temperature pyrolysis of coffee husk. Biomass Convers Biorefinery [Internet]. 2023 Feb 3;13(3):2193–205. Available from: https://link.springer.com/10.1007/s13399-021-01337-9

Jung K-W, Kim K, Jeong T-U, Ahn K-H. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour Technol [Internet]. 2016 Jan;200:1024–8. Available from: http://dx.doi.org/10.1016/j.biortech.2015.10.016

Sahoo TR, Prelot B. Adsorption processes for the removal of contaminants from wastewater. In: Nanomaterials for the Detection and Removal of Wastewater Pollutants [Internet]. Elsevier; 2020. p. 161–222. Available from: http://dx.doi.org/10.1016/B978-0-12-818489-9.00007-4

Xu R, Xiao S, Yuan J, Zhao A. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol [Internet]. 2011 Nov;102(22):10293–8. Available from: http://dx.doi.org/10.1016/j.biortech.2011.08.089

Qiu Y, Zheng Z, Zhou Z, Sheng GD. Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol [Internet]. 2009 Nov;100(21):5348–51. Available from: http://dx.doi.org/10.1016/j.biortech.2009.05.054

Tran TH, Le AH, Pham TH, Nguyen DT, Chang SW, Chung WJ, et al. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ [Internet]. 2020 Jul;725:138325. Available from: https://doi.org/10.1016/j.scitotenv.2020.138325

Ray SS, Gusain R, Kumar N. Adsorption equilibrium isotherms, kinetics and thermodynamics. In: Carbon Nanomaterial-Based Adsorbents for Water Purification [Internet]. Elsevier; 2020. p. 101–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128219591000052

Kumar Papegowda P, Syed AA. Isotherm, Kinetic and Thermodynamic Studies on the Removal of Methylene Blue Dye from Aqueous Solution Using Saw Palmetto Spent. Int J Environ Res [Internet]. 2017 Mar 21;11(1):91–8. Available from: http://link.springer.com/10.1007/s41742-017-0010-x

Murillo YS, Giraldo L, Moreno JC. Determination of the 2,4-dinitrofenol adsorption kinetic on bovine bone char by UV-VIS spectrophotometry. Rev Colomb Química [Internet]. 2011;40(1):91–103. Available from: http://www.redalyc.org/pdf/3090/309026686007.pdf

Chung H-K, Kim W-H, Park J, Cho J, Jeong T-Y, Park P-K. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J Ind Eng Chem [Internet]. 2015 Aug;28:241–6. Available from: http://dx.doi.org/10.1016/j.jiec.2015.02.021

Hincapié Mejía G, Cardona Cuervo S, Ríos LA. Absorption thermodynamic study of azoic dye with by means of a lignocellulosic waste in aqueous medium. Ing y Desarro [Internet]. 2018 Jan 1;36(1):97–118. Available from: http://rcientificas.uninorte.edu.co/index.php/ingenieria/article/view/9799/10941

Kujawska J, Wasag H. Biochar: a low-cost adsorbent of Methylene Blue from aqueous solutions. J Phys Conf Ser [Internet]. 2021 Jan 1;1736(1):012002. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1736/1/012002

Li H, Kong J, Zhang H, Gao J, Fang Y, Shi J, et al. Mechanisms and adsorption capacities of ball milled biomass fly ash/biochar composites for the adsorption of methylene blue dye from aqueous solution. J Water Process Eng [Internet]. 2023 Jul;53:103713. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214714423002325

Zhou P, Li X, Zhou J, Peng Z, Shen L, Li W. Insights of the adsorption mechanism of methylene blue on biochar from phytoextraction residues of Citrus aurantium L.: Adsorption model and DFT calculations. J Environ Chem Eng [Internet]. 2023 Oct;11(5):110496. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213343723012356

Descargas

Publicado

2024-07-12

Cómo citar

Gómez Jaimes, F. N., Muñoz Ríos, S. J., Rey Hernández, L. M., Acuña Rodríguez, K. N., & Acuña Llanes, Ángel C. (2024). Producción de biochar a partir de cáscara de palma, cisco de café y contenido ruminal bovino vía pirólisis y su uso en la remoción azul de metileno en solución acuosa. Innovaciencia, 12(1). https://doi.org/10.15649/2346075X.3550

Número

Sección

Artículos

Datos de los fondos

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.