Efecto del injerto poli-quitosano (N-L-lactide) sintetizado sobre el material genético humano
DOI:
https://doi.org/10.15649/2346075X.462Palabras clave:
Grafting copolymerization; L-Lactide; Chitosan; DNA; hsp-70 geneResumen
Introduction: Chitosan is one of the natural polymers can generally consider as a biocompatible and biodegradable polycationic
polymer, which has minimum immunogenicity and low cytotoxicity. Therefore, chitosan and its derivatives may represent potentially safe cationic carriers for use in gene delivery. Materials and
Methods: Chitosan with 90.1 DD% obtained by deacetylation of
chitin extracted from local shrimp shells. Graft copolymerization
of L-lactide onto chitosan was carried out at room temperature by
ring opening polymerization under a nitrogen atmosphere to prepare chitosan-g-poly (N-lactide) graft copolymer. It was obtained
in good yield and characterized by FTIR. The samples purity and
concentration were detected using both Nanodrop UV-spectroscopy and agarose gel electrophoresis techniques. The human
heat shock proteins gene, hsp-70, was used as a model of human
genes to study the effect of chitosan-g-poly (N-lactide) graft copolymer. Results and Discussion: The results revealed that chitosan-g-poly (N-lactide) graft copolymers had safety effect on the
DNA, and binding with it. the human heat shock proteins gene,
hsp-70, was used as a model of human genes to study the effect
of chitosan-g-poly (N-lactide) graft copolymer, it shows a good
binding ability the human gene, implies that it might be used in
biomedical applications in the future. Conclusions: Grafting of
L-lactide onto chitosn by ring opening polymerization was confirmed by FTIR. The repared polymer hase safety effects
on human DNA and genes. The chitosan-g-poly (N-lactide) graft
copolymer has shown highly efficiency to electrostatic interaction
with human DNA and gene, implying that it is suitable to be used
as DNA and gene delivery.
Referencias
Bavariya AJ, Andrew Norowski P Jr, Mark Anderson K, Adatrow PC, Garcia-Godoy F, Stein SH, Bumgardner JD.Evaluation of biocompatibility and degradation of chitosan nanofiber membrane crosslinked with genipin. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102(5): 1084-92. https://doi.org/10.1002/jbm.b.33090
Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: A review. Polymers.2016;8: 115-34. https://doi.org/10.3390/polym8040115
Zimoch-Korzycka A, Kulig D, Jarmoluk A, Marycz K, Matuszczak W. Study of enzymatically treated alginate/chitosan hydrosols in sponges formation process. Polymers. 2016; 8(1): 8-20. https://doi.org/10.3390/polym8010008
Avérous L, Pollet E, Editors.Biodegradable polymers. Springer-Verlag, London;2012. https://doi.org/10.1007/978-1-4471-4108-2_2
Elnashar M. Editor. Biotechnology of biopolymers. Intech Open Publisher. 2011. https://doi.org/10.5772/683
Puvvada Y S, Vankayalapati S, Sukhavasi S. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Intern Curr Pharma J.2012;1(9): 258-63. https://doi.org/10.3329/icpj.v1i9.11616
Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes J.C. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials,2006; 27(9): 2060-5. https://doi.org/10.1016/j.biomaterials.2005.09.020
Jiang H L , Kim Y K , Cho, C S , Cho M H. Medical Polymer-based gene therapy, Non-viral gene therapy, Xbo Yuan editord. Intech Publisher. 2011. https://doi.org/10.5772/20222
Lavertu M , Methot S , Tran-Khanh N , Buschmann M D . High effficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials. 2006; 27: 4815-24. https://doi.org/10.1016/j.biomaterials.2006.04.029
Luckachan G E , Pillai C K S. Chitosan/Oligo L-lactide Graft Copolymers: Effect of Hydrophobic Side Chains on the Physico-Chemical Properties and Biodegradability. Carbohydrate Polymers 2006; 64: 254-266. https://doi.org/10.1016/j.carbpol.2005.11.035
Mahajan A, Aggarwal G. Smart polymers: Innovations in novel drug delivery. Int. J. Drug Dev. Res. 2011; 3(3): 16-30.
Liua P , Hua Y , Fana Z , Li S. Synthesis, characterization and self-assembly behaviour of chitosan-graft polylactide copolymers. Nanoscience & Nanotechnology-Asia. 2012; 2: 38-46. https://doi.org/10.2174/2210682011202010038
Manavitehrani I, Fathi A, Badr H, Daly S, Shirazi A N , Dhegihan N. Biomedical applications of biodegradable polyesters. Polymers. 2016;8: 20-51. https://doi.org/10.3390/polym8010020
Wu Y , Zheng Y , Yang W , Wang C , Hu J , Fu S. Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer. Carbohydrate Polymers. 2005; 59:165-171. https://doi.org/10.1016/j.carbpol.2004.09.006
Kim J Y , Ha C S , Jo N J. Synthesis and properties of biodegradable chitin-graft-poly(L-lactide) copolymers, Polym. Int. 2002;51: 1123-8. https://doi.org/10.1002/pi.1000
Liu L , Shi A , Guo S , Fang Y , Chen S , Li J. Preparation of chitosan-g-polylactide graft copolymers via self-catalysis of phthaloylchitosan and their complexation with DNA, Reactive & Functional Polymers. 2010;70(5) :301-5. https://doi.org/10.1016/j.reactfunctpolym.2010.02.003
Yao F L , Liu C , Chen W , Bai Y , Tang Z Y , Yao K D . Synthesis and characterization of chitosan grafted oligo(L-lactic acid). Macromolecular Bioscience. 2003;3(11): 653-6. https://doi.org/10.1002/mabi.200350035
Feng H , Dong, C M Preparation, characterization, and self-assembled properties of biodegradable chitosan-poly(L-Lactide) hybrid amphiphiles. Biomacromolecules. 2006;7: 3069-75. https://doi.org/10.1021/bm060568l
Kaya M , Baran T , Erdogan S , Mentes A , Asan Özüsaglam M, Çakmak, Y S Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng. C , Mater. Biol. Appl. 2014, 45: 72-81. https://doi.org/10.1016/j.msec.2014.09.004
Mutasher S H , Saleh A A , Al-Lami H S Preparation of some chitosan derivatives and study their effect on human genetic material, Der Pharma Chemica. 2016; 8(11):125-34.
PuvvadaY , Vankayalapati S , Sukhavasi S. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry, Intern Curr Pharm J, 2012;1(9): 258-63. https://doi.org/10.3329/icpj.v1i9.11616
Bradley D , Williams G , Lawton M. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 2010;75(24): 8351-4. https://doi.org/10.1021/jo101589h
Kowalczyk A , Guzik K , SlezakK , DziedzicJ , Rokita H. Heat shock protein and heat shock factor 1 expression and localization in vaccinia virus infected human monocyte derived macrophages. J. Inflammation. 2005;2 : 12-21. https://doi.org/10.1186/1476-9255-2-12
Silverstien R M , Webster F X , Kiemle D J. Editors. Spectrometric identification of organic compounds, 7th edition. John Wiley & Sons Inc., New York; 2005.
Harpe A , Petersen H , Li Y , Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release. 2000;69: 309-22. https://doi.org/10.1016/S0168-3659(00)00317-5
Bronich T K , Kabanov A V , Marky L A.A thermodynamic characterization of the interaction of a cationic copolymer with DNA. J. Phys. Chem. B. 2001;105: 6042-50.
https://doi.org/10.1021/jp004395k
Senthil Kumar R , Sasikala K , Arunachalam S. DNA Interaction of some polymer-copper(II) complexes containing 2,20-bipyridyl ligand and their antimicrobial activities, J. Inorg. Biochem.2008; 102: 234-41. https://doi.org/10.1016/j.jinorgbio.2007.08.005
Mao S R, Sun W , Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010; 62 :12-27. https://doi.org/10.1016/j.addr.2009.08.004
Ahn C H , Chae S Y , Bae Y H , Kim S W. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Release. 2002;80: 273-82. https://doi.org/10.1016/S0168-3659(01)00547-8
Forrest M L , Koerber J T , Pack D W. A degradable polyethylenimine derivative with low toxcicity for highly efficient gene delivery. Bioconjugate Chem. 2003; 14: 934-40. https://doi.org/10.1021/bc034014g
De Smedt S C , Demeester J, Hennink W E Review: cationic polymer based gene delivery systems. Pharmaceutical Research.2000; 17(2): 113-26. https://doi.org/10.1023/A:1007548826495
Rungsardthong U , Ehtezazi T , Bailey L , Armes S P , Garnett M C , Stolnik S. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules. 2003;4: 683-90. https://doi.org/10.1021/bm025736y
Descargas
Publicado
Cómo citar
Número
Sección
Altmetrics
Descargas
Licencia
Todos los artículos publicados en esta revista científica están protegidos por los derechos de autor. Los autores retienen los derechos de autor y conceden a la revista el derecho de primera publicación con el trabajo simultáneamente licenciado bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) que permite compartir el trabajo con reconocimiento de autoría y sin fines comerciales.
Los lectores pueden copiar y distribuir el material de este número de la revista para fines no comerciales en cualquier medio, siempre que se cite el trabajo original y se den crédito a los autores y a la revista.
Cualquier uso comercial del material de esta revista está estrictamente prohibido sin el permiso por escrito del titular de los derechos de autor.
Para obtener más información sobre los derechos de autor de la revista y las políticas de acceso abierto, por favor visite nuestro sitio web.