Cribado in silico de flavonoides dirigidos a la proteína iniciadora de la replicación cromosómica como diana molecular para nuevos antibióticos en Shigella dysenteriae.
DOI:
https://doi.org/10.15649/2346075X.4005Palabras clave:
AutoDock Vina, Corylin, Modelado por Homología, Molecular DockingResumen
Introducción. La proteína DnaA, iniciadora de la replicación cromosómica bacteriana, desempeña un papel fundamental en el ciclo celular, convirtiéndola en un objetivo prometedor para el desarrollo de nuevos antibióticos. Objetivo. Identificar flavonoides con potencial para unirse e inhibir DnaA mediante cribado in silico. Materiales y Métodos. La secuencia de DnaA de Shigella dysenteriae se obtuvo de la base de datos UniProt. Se generó un modelo de homología de DnaA utilizando SWISS-MODEL. La precisión del modelo se evaluó utilizando ERRAT, PROCHECK y Molprobity. El modelo refinado se utilizó en experimentos de acoplamiento molecular con una biblioteca de 300 flavonoides. Las propiedades farmacocinéticas se predijeron utilizando admetSAR 2.0. Resultados. El cribado virtual de 300 flavonoides identificó el flavonoide Corylin como un ligando de alta puntuación con una afinidad de unión superior a la del ADP. El análisis de acoplamiento molecular reveló interacciones clave entre el Corylin y el DnaA, incluyendo puentes de hidrógeno con los residuos T179, R236 y R334, así como interacciones hidrofóbicas con los residuos F141, T174, G175, G177, K178, H180 e I305. Discusión. Se predice que el Corylin se absorbe en el tracto gastrointestinal y no parece inhibir el Transportador de Cationes Orgánicos 2 (OCT2). Sin embargo, podría inhibir potencialmente la función de las enzimas del citocromo P450 humano. Conclusiones. El cribado in silico identifica al Corylin como un posible compuesto líder para la inhibición de DnaA, lo que justifica una mayor investigación y validación in vitro e in vivo por su potencial como agente antimicrobiano.
Referencias
Salleh MZ, Nik Zuraina NMN, Hajissa K, Ilias MI, Banga Singh KK, Deris ZZ. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Shigella Species in Asia: a systematic review and meta-analysis. Antibiotics. 2022;11(11):1653. https://doi.org/10.3390/antibiotics11111653
Chagas M do SS, Behrens MD, Moragas-Tellis CJ, Penedo GXM, Silva AR, Gonçalves-de-Albuquerque CF. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022. https://doi.org/10.1155/2022/9966750
Dsouza D, Nanjaiah L. Antibacterial activity of 3, 3', 4'-Trihydroxyflavone from Justicia wynaadensis against diabetic wound and urinary tract infection. Brazilian J Microbiol. 2018;49:152-61. https://doi.org/10.1016/j.bjm.2017.05.002
Zhang Y, Zhang Y, Ma R, Sun W, Ji Z. Antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri. Int J Environ Res Public Health. 2023;20(6):4676. https://doi.org/10.3390/ijerph20064676
Sweet R, Booth C, Gotts K, Grove SF, Kroon PA, Webber M. Comparison of Antibacterial Activity of Phytochemicals against Common Foodborne Pathogens and Potential for Selection of Resistance. Microorganisms. 2023;11(10):2495. https://doi.org/10.3390/microorganisms11102495
Al-Khafaji ZHA, Saeed YS. Investigate the Antimicrobial Activity of Methanolic Extract of Cladophora glomerata. J Commun Dis (E-ISSN 2581-351X P-ISSN 0019-5138). 2024;56(1):8-12. https://doi.org/10.24321/0019.5138.202402
Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. https://doi.org/10.3390/ijms20184331
Ye J, Yang X, Ma C. Qsar, docking, and molecular dynamics simulation studies of sigmacidins as antimicrobials against streptococci. Int J Mol Sci. 2022;23(8):4085. https://doi.org/10.3390/ijms23084085
Hosen MI, Mukhrish YE, Jawhari AH, Celik I, Erol M, Abdallah EM, et al. Design, synthesis, in silico and POM studies for the identification of the pharmacophore sites of benzylidene derivatives. Molecules. 2023;28(6):2613. https://doi.org/10.3390/molecules28062613
Al-Khayyat MZ. In silico Screening for Inhibitors Targeting 4-diphosphocytidyl-2-C-methyl-D-erythritol Kinase in Salmonella typhimurium. Jordan J Biol Sci. 2021;14(1). https://doi.org/10.54319/jjbs/140110
Al-Khayyat MZ. In silico screening of natural products targeting chorismate synthase. Innovaciencia. 2019;7(1). https://doi.org/10.15649/2346075x.505
Grimwade JE, Leonard AC. Targeting the bacterial orisome in the search for new antibiotics. Front Microbiol. 2017;8:315840. https://doi.org/10.3389/fmicb.2017.02352
van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother. 2017;72(5):1275-84. https://doi.org/10.1093/jac/dkw548
Menikpurage IP, Woo K, Mera PE. Transcriptional activity of the bacterial replication initiator DnaA. Front Microbiol. 2021;12:662317. https://doi.org/10.3389/fmicb.2021.662317
McGuffin LJ, Edmunds NS, Genc AG, Alharbi SMA, Salehe BR, Adiyaman R. Prediction of protein structures, functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers. Nucleic Acids Res. 2023;51(W1):W274-80. https://doi.org/10.1093/nar/gkad297
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. https://doi.org/10.1093/nar/gky427
Shin WH, Lee GR, Heo L, Lee H, Seok C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Des. 2014;2(1):1-11. https://www.bdjn.org/journal/view.html?uid=6
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-9. https://doi.org/10.1002/pro.5560020916
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283-91. https://doi.org/10.1107/s0021889892009944
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 2018;27(1):293-315. https://doi.org/10.1002/pro.3330
Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, et al. ZINC20-a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model. 2020;60(12):6065-73. https://doi.org/10.1021/acs.jcim.0c00675
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 2012; 64:4-17. https://doi.org/10.1016/j.addr.2012.09.019
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:1-14. https://doi.org/10.1186/1758-2946-3-33
Trott O, Olson A. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function. Effic Optim Multithreading. 2009;31:455-61. https://doi.org/10.1002/jcc.21334
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127-34. https://doi.org/10.1093/protein/8.2.127
Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics. 2011;12:1-11. https://doi.org/10.1186/1471-2105-12-S1-S33
Chen QH, Chen XM, Chen XH, Komori A, Hung A, Li H. Structure-based multi-ligand molecular modeling to predict the synergistic effects of limonin and obacunone from simiao pill against nitric oxide synthase 3 associated with hyperuricemia. Precis Med Res. 2023;5:13. https://doi.org/10.53388/pmr20230013
Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-9. https://doi.org/10.1093/bioinformatics/bty707
Pavlopoulou A, Michalopoulos I. State-of-the-art bioinformatics protein structure prediction tools. Int J Mol Med. 2011;28(3):295-310. https://doi.org/10.3892/ijmm.2011.705
Tiwari M, Gupta S, Bhargava P. Virtual screening and molecular dynamics simulation studies to predict the binding of Sisymbrium irio L. derived phytochemicals against Staphylococcus aureus dihydrofolate reductase (DHFR). J Appl Nat Sci. 2022;14(4):1297-307. https://doi.org/10.31018/jans.v14i4.3641
Erzberger JP, Pirruccello MM, Berger JM. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J. 2002; 4763-4773. https://doi.org/10.1093/emboj/cdf496
Pražnikar J, Tomić M, Turk D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci Rep. 2019;9(1):1678. https://doi.org/10.1107/S2053273318094494
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(suppl_2):W375-83. https://doi.org/10.1093/nar/gkm216
Hung YL, Fang SH, Wang SC, Cheng WC, Liu PL, Su CC, et al. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep. 2017;7(1):46299. https://doi.org/10.1038/srep46299
Zaidi SFH, Yamada K, Kadowaki M, Usmanghani K, Sugiyama T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J Ethnopharmacol. 2009;121(2):286-91.https://doi.org/10.1016/j.jep.2008.11.001
Shahid F, Alghamdi YS, Mashraqi M, Khurshid M, Ashfaq UA. Proteome based mapping and molecular docking revealed DnaA as a potential drug target against Shigella sonnei. Saudi J Biol Sci. 2022;29(2):1147-59. https://doi.org/10.1016/j.sjbs.2021.09.051
Blanes-Mira C, Fernández-Aguado P, de Andrés-López J, Fernández-Carvajal A, Ferrer-Montiel A, Fernández-Ballester G. Comprehensive survey of consensus docking for high-throughput virtual screening. Molecules. 2022;28(1):175. https://doi.org/10.3390/molecules28010175
Lamothe SM, Guo J, Li W, Yang T, Zhang S. The human ether-a-go-go-related gene (hERG) potassium channel represents an unusual target for protease-mediated damage. J Biol Chem. 2016;291(39):20387-401. https://doi.org/10.1074/jbc.m116.743138
Zhao HC, Wu J, Zheng L, Zhu T, Xi BS, Wang B, et al. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids Surfaces B Biointerfaces. 2003 Jun;29(2-3):143-7. https://doi.org/10.3390/ijms222312808
Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2(3):192-204. https://doi.org/10.1038/nrd1032
Wright SH. Molecular and cellular physiology of organic cation transporter 2. Am J Physiol Physiol. 2019;317(6):F1669-79. https://doi.org/10.1152/ajprenal.00422.2019
Zarei A, Ramazani A, Pourmand S, Sattari A, Rezaei A, Moradi S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat Prod Res. 2022;36(16):4254-60. https://doi.org/10.1080/14786419.2021.1974435
Khan MI, Pathania S, Al-Rabia MW, Ethayathulla AS, Khan MI, Allemailem KS, et al. MolDy: Molecular dynamics simulation made easy. Bioinformatics. 2024;40(6). https://doi.org/10.1093/bioinformatics/btae313
Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371-87. https://doi.org/10.1038/nrd3975
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Altmetrics
Descargas
Licencia
Derechos de autor 2024 Innovaciencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Todos los artículos publicados en esta revista científica están protegidos por los derechos de autor. Los autores retienen los derechos de autor y conceden a la revista el derecho de primera publicación con el trabajo simultáneamente licenciado bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) que permite compartir el trabajo con reconocimiento de autoría y sin fines comerciales.
Los lectores pueden copiar y distribuir el material de este número de la revista para fines no comerciales en cualquier medio, siempre que se cite el trabajo original y se den crédito a los autores y a la revista.
Cualquier uso comercial del material de esta revista está estrictamente prohibido sin el permiso por escrito del titular de los derechos de autor.
Para obtener más información sobre los derechos de autor de la revista y las políticas de acceso abierto, por favor visite nuestro sitio web.