In silico screening of flavonoids targeting chromosomal replication initiator protein as a molecular target for new antibiotics in Shigella dysenteriae.

Authors

DOI:

https://doi.org/10.15649/2346075X.4005

Keywords:

AutoDock Vina; Corylin; Homology Modeling; Molecular Docking

Abstract

Introduction: DNA chromosomal replication initiator protein, DnaA is a component of bacterial division machinery. Objetives: virtual screening of phytochemicals for new antibiotics at novel molecular targets. Materials and Methods: SWISS-Model tool was used in homology modeling of this protein and validation tools were also used to check for its accuracy. The evaluation tools were ERRAT, PROCHECK and Molprobity servers. The refined model by GalaxyWEB server, then employed in molecular docking experiments. A total of 300 natural products were used in virtual screening for lead compounds targeting the model by AutoDock Vina software. Results and Discussion: Corylin among then best ligands that have binding affinities lower than ADP as control. Interactions in the form of hydrogen bonds and hydrophobic interactions were analyzed by LigPlot. The best compounds were submitted into iGEMDOCK docking tool for consensus scoring approach. admetSAR 2.0 was used to predict for pharmacokinetics, interactions and toxicities of these ligands inside the human body. Conclusions: Therefore, preliminary screening of lead compounds must be accompanied by studying pharmacologic properties.

References

1.Salleh MZ, Nik Zuraina NMN, Hajissa K, Ilias MI, Banga Singh KK, Deris ZZ. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Shigella Species in Asia: a systematic review and meta-analysis. Antibiotics. 2022;11(11):1653. https://doi.org/10.3390/antibiotics11111653

2.Chagas M do SS, Behrens MD, Moragas-Tellis CJ, Penedo GXM, Silva AR, Gonçalves-de-Albuquerque CF. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022. https://doi.org/10.1155/2022/9966750

3.Dsouza D, Nanjaiah L. Antibacterial activity of 3, 3', 4'-Trihydroxyflavone from Justicia wynaadensis against diabetic wound and urinary tract infection. Brazilian J Microbiol. 2018;49:152-61. https://doi.org/10.1016/j.bjm.2017.05.002

4.Zhang Y, Zhang Y, Ma R, Sun W, Ji Z. Antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri. Int J Environ Res Public Health. 2023;20(6):4676. https://doi.org/10.3390/ijerph20064676

5.Sweet R, Booth C, Gotts K, Grove SF, Kroon PA, Webber M. Comparison of Antibacterial Activity of Phytochemicals against Common Foodborne Pathogens and Potential for Selection of Resistance. Microorganisms. 2023;11(10):2495. https://doi.org/10.3390/microorganisms11102495

6.Al-Khafaji ZHA, Saeed YS. Investigate the Antimicrobial Activity of Methanolic Extract of Cladophora glomerata. J Commun Dis (E-ISSN 2581-351X P-ISSN 0019-5138). 2024;56(1):8-12. https://doi.org/10.24321/0019.5138.202402

7.Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. https://doi.org/10.3390/ijms20184331

8.Ye J, Yang X, Ma C. Qsar, docking, and molecular dynamics simulation studies of sigmacidins as antimicrobials against streptococci. Int J Mol Sci. 2022;23(8):4085. https://doi.org/10.3390/ijms23084085

9. Hosen MI, Mukhrish YE, Jawhari AH, Celik I, Erol M, Abdallah EM, et al. Design, synthesis, in silico and POM studies for the identification of the pharmacophore sites of benzylidene derivatives. Molecules. 2023;28(6):2613. https://doi.org/10.3390/molecules28062613

10.Al-Khayyat MZ. In silico Screening for Inhibitors Targeting 4-diphosphocytidyl-2-C-methyl-D-erythritol Kinase in Salmonella typhimurium. Jordan J Biol Sci. 2021;14(1). https://doi.org/10.54319/jjbs/140110

11.Al-Khayyat MZ. In silico screening of natural products targeting chorismate synthase. Innovaciencia. 2019;7(1). https://doi.org/10.15649/2346075x.505

12.Grimwade JE, Leonard AC. Targeting the bacterial orisome in the search for new antibiotics. Front Microbiol. 2017;8:315840. https://doi.org/10.3389/fmicb.2017.02352

13.van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother. 2017;72(5):1275-84. https://doi.org/10.1093/jac/dkw548

14.Menikpurage IP, Woo K, Mera PE. Transcriptional activity of the bacterial replication initiator DnaA. Front Microbiol. 2021;12:662317. https://doi.org/10.3389/fmicb.2021.662317

15. McGuffin LJ, Edmunds NS, Genc AG, Alharbi SMA, Salehe BR, Adiyaman R. Prediction of protein structures, functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers. Nucleic Acids Res. 2023;51(W1):W274-80. https://doi.org/10.1093/nar/gkad297

16.Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. https://doi.org/10.1093/nar/gky427

17.Shin WH, Lee GR, Heo L, Lee H, Seok C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Des. 2014;2(1):1-11. https://www.bdjn.org/journal/view.html?uid=6

18.Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-9. https://doi.org/10.1002/pro.5560020916

19.Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283-91. https://doi.org/10.1107/s0021889892009944

20.Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 2018;27(1):293-315. https://doi.org/10.1002/pro.3330

21.Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, et al. ZINC20-a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model. 2020;60(12):6065-73. https://doi.org/10.1021/acs.jcim.0c00675

22. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 2012; 64:4-17. https://doi.org/10.1016/j.addr.2012.09.019

23.O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:1-14. https://doi.org/10.1186/1758-2946-3-33

24.Trott O, Olson A. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function. Effic Optim Multithreading. 2009;31:455-61. https://doi.org/10.1002/jcc.21334

25.Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127-34. https://doi.org/10.1093/protein/8.2.127

26.Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics. 2011;12:1-11. https://doi.org/10.1186/1471-2105-12-S1-S33

27.Chen QH, Chen XM, Chen XH, Komori A, Hung A, Li H. Structure-based multi-ligand molecular modeling to predict the synergistic effects of limonin and obacunone from simiao pill against nitric oxide synthase 3 associated with hyperuricemia. Precis Med Res. 2023;5:13. https://doi.org/10.53388/pmr20230013

28. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-9. https://doi.org/10.1093/bioinformatics/bty707

29.Pavlopoulou A, Michalopoulos I. State-of-the-art bioinformatics protein structure prediction tools. Int J Mol Med. 2011;28(3):295-310. https://doi.org/10.3892/ijmm.2011.705

30. Tiwari M, Gupta S, Bhargava P. Virtual screening and molecular dynamics simulation studies to predict the binding of Sisymbrium irio L. derived phytochemicals against Staphylococcus aureus dihydrofolate reductase (DHFR). J Appl Nat Sci. 2022;14(4):1297-307. https://doi.org/10.31018/jans.v14i4.3641

31. Erzberger JP, Pirruccello MM, Berger JM. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J. 2002; 4763-4773. https://doi.org/10.1093/emboj/cdf496

32. Pražnikar J, Tomić M, Turk D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci Rep. 2019;9(1):1678. https://doi.org/10.1107/S2053273318094494

33. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(suppl_2):W375-83. https://doi.org/10.1093/nar/gkm216

34. Hung YL, Fang SH, Wang SC, Cheng WC, Liu PL, Su CC, et al. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep. 2017;7(1):46299. https://doi.org/10.1038/srep46299

35. Zaidi SFH, Yamada K, Kadowaki M, Usmanghani K, Sugiyama T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J Ethnopharmacol. 2009;121(2):286-91.https://doi.org/10.1016/j.jep.2008.11.001

36. Shahid F, Alghamdi YS, Mashraqi M, Khurshid M, Ashfaq UA. Proteome based mapping and molecular docking revealed DnaA as a potential drug target against Shigella sonnei. Saudi J Biol Sci. 2022;29(2):1147-59. https://doi.org/10.1016/j.sjbs.2021.09.051

37. Blanes-Mira C, Fernández-Aguado P, de Andrés-López J, Fernández-Carvajal A, Ferrer-Montiel A, Fernández-Ballester G. Comprehensive survey of consensus docking for high-throughput virtual screening. Molecules. 2022;28(1):175. https://doi.org/10.3390/molecules28010175

38. Lamothe SM, Guo J, Li W, Yang T, Zhang S. The human ether-a-go-go-related gene (hERG) potassium channel represents an unusual target for protease-mediated damage. J Biol Chem. 2016;291(39):20387-401. https://doi.org/10.1074/jbc.m116.743138

39. Zhao HC, Wu J, Zheng L, Zhu T, Xi BS, Wang B, et al. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids Surfaces B Biointerfaces. 2003 Jun;29(2-3):143-7. https://doi.org/10.3390/ijms222312808

40. Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2(3):192-204. https://doi.org/10.1038/nrd1032

41. Wright SH. Molecular and cellular physiology of organic cation transporter 2. Am J Physiol Physiol. 2019;317(6):F1669-79. https://doi.org/10.1152/ajprenal.00422.2019

42. Zarei A, Ramazani A, Pourmand S, Sattari A, Rezaei A, Moradi S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat Prod Res. 2022;36(16):4254-60. https://doi.org/10.1080/14786419.2021.1974435

43. Khan MI, Pathania S, Al-Rabia MW, Ethayathulla AS, Khan MI, Allemailem KS, et al. MolDy: Molecular dynamics simulation made easy. Bioinformatics. 2024;40(6). https://doi.org/10.1093/bioinformatics/btae313

44. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371-87. https://doi.org/10.1038/nrd3975

45. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/

Downloads

Additional Files

Published

2024-09-03 — Updated on 2025-11-07

Versions

How to Cite

Al-Khayyat, M. (2025). In silico screening of flavonoids targeting chromosomal replication initiator protein as a molecular target for new antibiotics in Shigella dysenteriae. Innovaciencia, 12(1). https://doi.org/10.15649/2346075X.4005 (Original work published 2024)

Downloads

Download data is not yet available.

Issue

Section

Original research and innovation article

Similar Articles

1-10 of 24

You may also start an advanced similarity search for this article.