Bioindicadores y contaminación por metales pesados en lagunas altoandinas peruanas: Un enfoque limnológico

Autores/as

  • Roldán-Rodríguez Judith Facultad de Ciencias Biológicas, Departamento de Microbiología, Universidad Nacional de Trujillo, Perú.
  • Andrés Rodríguez Castillo Facultad de Ciencias Biológicas, Departamento de Pesquería, Universidad Nacional de Trujillo, Perú.
  • Arriaga Verástegui, Hilda Universidad Nacional de Trujillo. Facultad de Ciencias Sociales, Universidad Nacional de Trujillo, Perú.
  • Aurora Paredes Pérez Facultad de Ciencias Biológicas, Departamento de Pesquería, Universidad Nacional de Trujillo, Perú.

DOI:

https://doi.org/10.15649/2346075X.4951

Palabras clave:

Macroinvertebrados acuáticos, Metales pesados, Parámetros fisicoquímicos, Calidad de agua;

Resumen

Introducción. Las lagunas altoandinas constituyen un patrimonio sociocultural, económico y ambiental para las comunidades locales, además de ser ecosistemas ecológicamente relevantes que requieren protección y conservación. El conocimiento de sus características limnológicas es fundamental para orientar estrategias de conservación y aprovechamiento sostenible. Objetivos. Evaluar las características limnológicas de tres lagunas altoandinas ubicadas en Quiruvilca, región La Libertad, Perú, en una zona con influencia minera. Materiales y Métodos. Se realizaron muestreos semestrales entre 2017 y 2019. Se midieron parámetros fisicoquímicos (temperatura, conductividad, pH, oxígeno disuelto, saturación de oxígeno y transparencia), así como las concentraciones de metales pesados en agua y sedimentos. Se identificaron macroinvertebrados acuáticos a nivel de familia. La calidad del agua se evaluó mediante los índices BMWP (Biological Monitoring Working Party) y ABI (Índice Biológico Andino). Se aplicaron análisis descriptivos, ANOVA y correlaciones para explorar tendencias y variabilidad. Resultados. Los valores promedios registrados paras los parámetros físicos químicos fueron temperatura de 12,6 ºC, pH de 4,5, conductividad de 20,4 μS/cm, Oxígeno Disuelto de 6,5 mg/L, Saturación de Oxígeno de 99,8% y transparencia entre 0,37 y 3,0 m. Los metales pesados (Arsénico, Cobre, Mercurio y Plomo) excedieron los límites permisibles. Las familias de macroinvertebrados más abundantes fueron Corixidae, Dysticidae, Hyalellidae, Planariidae y Chironomidae. Conclusiones. Las lagunas presentaron condiciones limnológicas relativamente estables, pero con niveles moderados de contaminación. Aunque aún sustentan vida acuática, el agua no es apta para el consumo humano ni animal. Por tanto, es necesario implementar estrategias de remediación para reducir los riesgos asociados a la contaminación. 

Referencias

1.De La Fuente A, Meruane C, Suárez F. Long-term spatiotemporal variability in high Andean wetlands in northern Chile. Science of The Total Environment [Internet]. 2021 eb;756:143830. https://doi.org/10.1016/j.scitotenv.2020.143830

2.Rascón J, Corroto F, Leiva-Tafur D, Gamarra OA. Variaciones limnológicas espaciotemporales de un lago altoandino tropical al norte de Perú. Ecología Austral [Internet]. 2021 Ago;31(2):343-56. https://doi.org/10.25260/EA.21.31.2.0.1200

3.Viviroli D, Kummu M, Meybeck M, Kallio M, Wada. Increasing dependence of lowland populations on mountain water resources. Nature Sustainability [Internet]. 2020 Jul;3(11):917-28. https://doi.org/10.1038/s41893-020-0559-9

4.Yang L, Lv , Jiang D, Fan J, Zhang X, He W. Whether CCS technologies will exacerbate the water crisis in China? -A full life-cycle analysis. Renewable and Sustainable Energy Reviews [Internet]. 2020 Dic;134:110374. https://doi.org/10.1016/j.rser.2020.110374

5.Mishra B, Kumar P, Saraswat C, Chakraborty S, Gautam A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water [Internet]. 2021 Feb;13(4):490. https://doi.org/10.3390/w13040490

6.Custodio M, Peñaloza R, Chanamé F, Yaranga R, Pantoja R. Assessment of the Aquatic Environment Quality of High Andean Lagoons using Multivariate Statistical Methods in Two Contrasting Climatic Periods. Journal of Ecological Engineering [Internet]. 2018 Nov;19(6):24-33. https://doi.org/10.12911/22998993/92677

7.Damanik-Ambarita MN, Lock K, Boets P, Everaert G, Tien TH, Eurie MA, et al. Ecological water quality analysis of the Guayas river basin (Ecuador) based on macroinvertebrates indices. Limnologica [Internet]. 2016 Mar;57:27-59. https://doi.org/10.1016/j.limno.2016.01.001

8.Dong JY, Wang X, Zhang X, Bidegain G, Zhao L. Integrating multiple indices based on heavy metals and macrobenthos to evaluate the benthic ecological quality status of Laoshan Bay, Shandong Peninsula, China. Ecological Indicators [Internet]. 2023 Sep;153:110367. https://doi.org/10.1016/j.ecolind.2023.110367

9.Visitación-Bustamante K, Visitación-Bustamante L, Visitación-Figueroa L. Caracterización hidroquímica de una subcuenca altoandina en el departamento de Moquegua, Perú. Tecnología y ciencias del agua [Internet]. 2023 Sep;14(5):257-90. https://doi.org/10.24850/j-tyca-14-05-06

10. Delgado-Fernández E, Cruz D, Ayavaca R, Benítez Á, Hernández B. Microalgal Diversity as Bioindicators for Assessing and Sustaining Water Quality in the High Mountain Lakes of Quimsacocha, Azuay, Ecuador. Sustainability [Internet]. 2025 feb;17(4):1620. https://doi.org/10.3390/su17041620

11.Jerves-Cobo R, Benedetti L, Amerlinck Y, Lock K, De Mulder C, Van Butsel J, et al. Integrated ecological modelling for evidence-based determination of water management interventions in urbanized river basins: Case study in the Cuenca River basin (Ecuador). Science of The Total Environment [Internet]. 2020 Mar;709:136067. https://doi.org/10.1016/j.scitotenv.2019.136067

12. Torres-Ramírez P, Bustos-Espinoza L, Figueroa S, León-Muñoz J, Jerez R, Galán A. Influence of the Hydrological Variability on Water Quality and Benthic Macroinvertebrates in a Chilean Estuary During a Megadrought. Estuaries and Coasts [Internet]. 2024 Dec;47(3):724-42. https://doi.org/10.1007/s12237-023-01311-w

13.Rodríguez-Castillo A, Roldán-Rodríguez J, Bopp-Vidal GM. Macroinvertebrates bentons biological quality indicators of the water of highaltitudeandean lagoons, La Libertad-Peru. REBIOL [Internet]. 2021 Jul;41(1):91-101. https://doi.org/10.17268/rebiol.2021.41.01.09

14.Salgado J, Vélez MI, González-Arango C, Rose NL, Yang H, Huguet C, et al. A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basin. Science of The Total Environment [Internet]. 2020 Ago;729:138444. https://doi.org/10.1016/j.scitotenv.2020.138444

15.Arrieira RL, Alves GM, Schwind LTF, Lansac-Tôha FA. Local factors affecting the testate amoeba community (Protozoa: Arcellinida; Euglyphida) in a neotropical floodplain. Journal of Limnology [Internet]. 2015 Feb;74(3):444-52. https://doi.org/10.4081/jlimnol.2015.1078

16.Romero-Mariscal G, Garcia-Chevesich A, Morales-Paredes L, Arenazas-Rodriguez A, Ticona-Quea J, Vanzin G, et al. Peruvian Wetlands: National Survey, Diagnosis, and Further Steps toward Their Protection. Sustainability [Internet]. 2023 May;15(10):8255. https://doi.org/10.3390/su15108255

17.Autoridad Nacional del Agua. Protocolo Nacional de Monitoreo de la Calidad de Cuerpos Naturales de Agua Superficiales. Resolución Jefatural. Lima: Ministerio de Agricultura y Riego; 2016. Nº 0.10-2016-ANA.

18.Custodio M, Chávez E. Quality of the aquatic environment of high Andean rivers evaluated through environmental indicators: a case of the Cunas River, Peru. Ingeniare. Revista chilena de ingeniería [Internet]. 2019 Sep;27(3):396-409. https://doi.org/10.4067/S0718-33052019000300396

19.García-Avila F, Loja-Suco P, Siguenza-Jeton C, Jiménez-Ordoñez M, Valdiviezo-Gonzales L, Cabello-Torres R, et al. Evaluation of the water quality of a high Andean lake using different quantitative approaches. Ecological Indicators [Internet]. 2023 Oct;154:110924. https://doi.org/10.1016/j.ecolind.2023.110924

20.MINAM. Guía para Muestreo de Suelos. Resolución Ministerial. Lima: Ministerio del Ambiente; 2014. 085-2014-MINAM. https://www.minam.gob.pe/disposiciones/resolucion-ministerial-n-085-2014-minam/.

21.Canadian Environmental Quality Guidelines. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Winnipeg: Canadian Council of Ministers of the Environment; 2002. https://ccme.ca/en/resources/sediment#.

22.Delegido J, Urrego P, Vicente E, Sòria-Perpinyà X, Soria JM, Pereira-Sandoval M, et al. Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado trófico en la Comunidad Valenciana. Rev. teledetec. [Internet]. 2019;54:15-24. https://doi.org/10.4995/raet.2019.12603

23.Baird RB, Eaton AD, Rice EW. Standard Methods For the Examination of Water and Wastewater 23th edition. Washington: American Public Health Association; 2017. https://www.academia.edu105197442/Standar_Methods_For_Examination_23th_edit.

24.Roldán GA. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. Primera ed. Medellín: Editorial Universidad de Antioquia; 2003.

25.Domínguez E. Macroinvertebrados bentónicos Sudamericanos. Sistemática y Biología Domínguez E, Fernández HR, editors. Tucumán: Fundación Miguel Lillo; 2009

26.Huamantinco AA, Ortiz W. Clave de géneros de larvas de Trichoptera (Insecta) de la Vertiente Occidental de los Andes, Lima, Perú. Revista Peruana de Biología [Internet]. 2010 Abr;17(1):75-80. https://doi.org/10.15381/rpb.v17i1.54

27.Acosta R, Ríos B, Rieradevall M, Prat N. Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. Limnetica [Internet]. 2009 Jun;28(1):35-64. https://doi.org/10.23818/limn.28.04

28.Rios-Touma B, Acosta R, Prat N. The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Revista de Biología Tropical [Internet]. 2014 Abr;62:249. https://doi.org/10.15517/rbt.v62i0.15791

29. StatPoint Technologies, Inc. Statgraphics Centurion XVII, version 17.2.00. Warrenton (VA): StatPoint Technologies, Inc.; 2023.

30.Hernández-Sampieri R, Mendoza C. Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta Ciudad de México: Mc Graw Hill Education; 2018.

31.MINAM. Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias. Decreto Supremo. Lima: Ministerio del Ambiente; 2017. N° 004-2017-MINAM. https://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf.

32.Tapia L, Sánchez T, Baylón M, Jara E, Arteaga C, Maceda D, et al. Invertebrados bentónicos como bioindicadores de calidad de agua en Lagunas Altoandinas del Perú. Ecología Aplicada [Internet]. 2018 Dic;17(2):149. https://doi.org/10.21704/rea.v17i2.1235

33.Huanaco JL. Evaluación de la diversidad del fitoplancton de la laguna La Viuda (Lima, Perú) en agosto-noviembre 2016. Arnaldoa [Internet]. 2018 Dic;25(3):1027-40. https://doi.org/10.22497/arnaldoa.253.25314

34.Azouzi R, Charef A, Ayed, Khadhar S. Effect of Water Quality on Heavy Metal Redistribution and Mobility in Polluted Agricultural Soils in a Semi-Arid Region. Pedosphere [Internet]. 2019 Dic;29(6):730-9. https://doi.org/10.1016/S1002-0160(17)60367-9

35.Saalidong BM, Aram SA, Otu S, Lartey PO. Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLOS ONE [Internet]. 2022 Ene;17(1):e0262117. https://doi.org/10.1371/journal.pone.0262117

36.Ma, Wang L, Li X, Qu X, Yin J, Zhao X, et al. The oasis regional small and medium lake water transparency monitoring research and impact factor analysis based on field data combined with high resolution GF-1 satellite data. Journal of Freshwater Ecology [Internet]. 2021 Ene;36(1):77-96. https://doi.org/10.1080/02705060.2021.1883753

37.Belal AAM, El-Sawy MA, Dar A. The effect of water quality on the distribution of macro-benthic fauna in Western Lagoon and Timsah Lake, Egypt.I. Egyptian Journal of Aquatic Research [Internet]. 2016 Dic;42(4):437-48. https://doi.org/10.1016/j.ejar.2016.12.003

38.López-Martínez ML, Jurado-Rosero GA, Páez- Montero ID, Madroñero-Palacios SM. Estructura térmica del lago Guamués, un lago tropical de alta montaña. Luna Azul [Internet]. 2017 Abr;(44):94-119. https://doi.org/10.17151/luaz.2017.44.7

39.De la Mora C, Flores HE, Durán Á, Ruiz JA. Cambio climático y el impacto en la concentración de oxígeno disuelto en el Lago de Chapala. Revista Mexicana de Ciencias Agrícolas [Internet]. 2011 Oct;2(Esp. 2):381-394. https://www.scielo.org.mx/pdf/remexca/v2nspe2/v2spe2a16.pdf.

40.Chapa C, Guerrero R. Eutrofización: Abundancia que mata. Revista cómo ves [Internet]. 2010 Ene;134:22-5. https://www.comoves.unam.mx/numeros/guia/134.

41.Pabón SE, Benítez R, Sarria RA, Gallo JA. Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre ciencia e ingeniería [Internet]. 2020;14(27):9-18. https://doi.org/10.31908/19098367.1734

42.Custodio M, Espinoza C, Peñaloza R, Peralta-Ortiz T, Sánchez-Suárez H, Ordinola-Zapata A. Microbial diversity in intensively farmed lake sediment contaminated by heavy metals and identification of microbial taxa bioindicators of environmental quality. Scientific Reports [Internet]. 2022 Ene;12(1):80. https://doi.org/10.1038/s41598-021-03949-7

43.Ndur SA, Nyarko SY, Quaicoe I, Osei LB. Heavy Metal Loading in Surface Sediments along the Kawere Stream, Tarkwa, Ghana. Ghana Mining Journal [Internet]. 2020 Dic;20(2):77-85. https://doi.org/10.4314/gm.v20i2.9

44.Balian EV, Segers H, Lévêque C, Martens K. An introduction to the Freshwater Animal Diversity Assessment (FADA) project. Hydrobiologia [Internet]. 2007 Dic;595(1):3-8. https://doi.org/10.1007/s10750-007-9235-6

45.Waller A, González ER, Verdi A, Tomasco IH. Genus Hyalella (Amphipoda: Hyalellidae) in Humid Pampas: molecular diversity and a provisional new species. Arthropod Systematics & Phylogeny [Internet]. 2022 Jun;80:261-78. https://doi.org/10.3897/asp.80.e79498

46.Peralta MA, Isa ÁV. A new species of Hyalella (Crustacea, Amphipoda, Hyalellidae) from the Puna biogeographic province in Argentina. ZooKeys [Internet]. 2019 Jul;865:87-102. https://doi.org/10.3897/zookeys.865.32878

47.Turley MD, Bilotta GS, Chadd RP, Extence CA, Brazier RE, Burnside NG, et al. A sediment-specific family-level biomonitoring tool to identify the impacts of fine sediment in temperate rivers and streams. Ecological Indicators [Internet]. 2016 Nov;70:151-65. https://doi.org/10.1016/j.ecolind.2016.05.040

48.Miserendino ML, Brand C, Di Prinzio CY. Assessing Urban Impacts on Water Quality, Benthic Communities and Fish in Streams of the Andes Mountains, Patagonia (Argentina). Water, Air, and Soil Pollution [Internet]. 2008 Oct;194(1-4):91-110. https://doi.org/10.1007/s11270-008-9701-4

Descargas

Publicado

2025-05-05

Cómo citar

Bioindicadores y contaminación por metales pesados en lagunas altoandinas peruanas: Un enfoque limnológico. (2025). Innovaciencia, 13(1). https://doi.org/10.15649/2346075X.4951

Descargas

Los datos de descarga aún no están disponibles.

Número

Sección

Artículo original de investigación e innovacion

Artículos similares

1-10 de 177

También puede Iniciar una búsqueda de similitud avanzada para este artículo.