THE POLYLOGARITHM HELPS TO UNDERSTAND THE RELATION BETWEEN BLACK HOLE’S ENTROPY AND AREA

Authors

  • Francisco Ricardo Muñoz Muñoz Colegio IED John F. Kennedy

DOI:

https://doi.org/10.15649/2346075X.235

Keywords:

Entropy, Area, Black hole, X rays, polylogarithm.

Abstract

Introduction: It begins with definitions and explanations of concepts involved in the dynamics of black holes. Materials and methods: review of the subject is developed based on the fact that the black hole is surrounded by a “sea of photons” created through the process of accretion, reaching to obtain the relationship between entropy and the area of a black hole in accordance with the scientific literature. Results and discussion: In this paper, a derivation of the relationship between entropy and area of a stationary black hole, loaded from the establishment of a radiation bath of photons corresponding to the frequency of lightning occurs X. Conclusions: In the process mathematical expressions arise shortly worked in formal physics courses at the undergraduate level, as is the polylogarithm function
Jonquière or present throughout the developments that follow, once established for the first time.

Author Biography

  • Francisco Ricardo Muñoz Muñoz, Colegio IED John F. Kennedy

    Físico. Candidato a Magíster en Didáctica de las Ciencias. Profesor planta colegio IED John F. Kennedy del Distrito Capital. Bogotá. Colombia. 

References

(1) Thorne, K. S. Agujeros negro y tiempo curvo. El escandaloso legado de Einstein. Crítica, Barcelona, 1995.

(2) Cheng, T. P. Relativity, gravitation and cosmology. A basic introduction. Oxford University Press, Oxford, 2005.

(3) Hacyan, S. Los hoyos negros y la curvatura del espacio – tiempo. Fondo de Cultura Económica, México, 2008.

(4) Sepúlveda, S. A. Bases de astrofísica. Universidad de Antioquia. Medellín, 2014.

(5) Greene, J. E. Agujeros negros de masa intermedia. Investigación y Ciencia 2012, 26-31.

(6) Schutz, B. A first course in general relativity. Cambridge University Press. Cambridge, 2009.

(7) Stowe, K. An introduction to thermodynamics and statistical mechanics. Cambridge University Press. Cambridge, 2007.

(8) Ryder, L. Introduction to general relativity. Cambridge University Press. Cambridge, 2009.

(9) Hawking, S. The quantum mechanics of black holes. Scientific American Inc. 1976, 34-41.

(10) Camenzind, M. Compact objects in astrophysics. White dwarfs, neutron stars and black holes. Springer. Heidelberg, 2007.

(11) Luminet, J. P. Black holes: A general introduction. Disponible en http://arxiv.org/pdf/astro-ph/9801252.pdf. Recuperado el 1 de marzo de 2013.

(12) Guénault, T. Statistical physics. Springer. Dordrecht, 2007.

(13) Das, A., & Ferbel, T. Introduction to nuclear and particle physics. Wiley. New York, 1994.

(14) Zettili, N. Quantum mechanics. Concepts and applications. Wiley. United Kingdom, 2009.

(15) Carroll, S. Spacetime and geometry. An introduction to general relativity. Addison Wesley. San Francisco, 2004.

(16) Lewin, L. Polylogarithms and associated functions. North Holland. New York, 1981.

(17) Landau, L. D., & Lifshitz, E. M. Física estadística. Reverté. Barcelona, 1964.

(18) Frolov, V. P., & Novikov, I. D. Black hole physics. Basic concepts and new developments. Kluwer Academic publishers, 1997.

(19) WolframMathWorld. Polylogarithm. Recuperado el 6 de marzo de 2013 de http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/.

Downloads

Published

2014-12-19

How to Cite

THE POLYLOGARITHM HELPS TO UNDERSTAND THE RELATION BETWEEN BLACK HOLE’S ENTROPY AND AREA. (2014). Innovaciencia, 2(1), 25-32. https://doi.org/10.15649/2346075X.235

Downloads

Issue

Section

Original research and innovation article

Similar Articles

1-10 of 20

You may also start an advanced similarity search for this article.