THE POLYLOGARITHM HELPS TO UNDERSTAND THE RELATION BETWEEN BLACK HOLE’S ENTROPY AND AREA
DOI:
https://doi.org/10.15649/2346075X.235Keywords:
Entropy, Area, Black hole, X rays, polylogarithm.Abstract
Introduction: It begins with definitions and explanations of concepts involved in the dynamics of black holes. Materials and methods: review of the subject is developed based on the fact that the black hole is surrounded by a “sea of photons” created through the process of accretion, reaching to obtain the relationship between entropy and the area of a black hole in accordance with the scientific literature. Results and discussion: In this paper, a derivation of the relationship between entropy and area of a stationary black hole, loaded from the establishment of a radiation bath of photons corresponding to the frequency of lightning occurs X. Conclusions: In the process mathematical expressions arise shortly worked in formal physics courses at the undergraduate level, as is the polylogarithm function
Jonquière or present throughout the developments that follow, once established for the first time.
References
(1) Thorne, K. S. Agujeros negro y tiempo curvo. El escandaloso legado de Einstein. Crítica, Barcelona, 1995.
(2) Cheng, T. P. Relativity, gravitation and cosmology. A basic introduction. Oxford University Press, Oxford, 2005.
(3) Hacyan, S. Los hoyos negros y la curvatura del espacio – tiempo. Fondo de Cultura Económica, México, 2008.
(4) Sepúlveda, S. A. Bases de astrofísica. Universidad de Antioquia. Medellín, 2014.
(5) Greene, J. E. Agujeros negros de masa intermedia. Investigación y Ciencia 2012, 26-31.
(6) Schutz, B. A first course in general relativity. Cambridge University Press. Cambridge, 2009.
(7) Stowe, K. An introduction to thermodynamics and statistical mechanics. Cambridge University Press. Cambridge, 2007.
(8) Ryder, L. Introduction to general relativity. Cambridge University Press. Cambridge, 2009.
(9) Hawking, S. The quantum mechanics of black holes. Scientific American Inc. 1976, 34-41.
(10) Camenzind, M. Compact objects in astrophysics. White dwarfs, neutron stars and black holes. Springer. Heidelberg, 2007.
(11) Luminet, J. P. Black holes: A general introduction. Disponible en http://arxiv.org/pdf/astro-ph/9801252.pdf. Recuperado el 1 de marzo de 2013.
(12) Guénault, T. Statistical physics. Springer. Dordrecht, 2007.
(13) Das, A., & Ferbel, T. Introduction to nuclear and particle physics. Wiley. New York, 1994.
(14) Zettili, N. Quantum mechanics. Concepts and applications. Wiley. United Kingdom, 2009.
(15) Carroll, S. Spacetime and geometry. An introduction to general relativity. Addison Wesley. San Francisco, 2004.
(16) Lewin, L. Polylogarithms and associated functions. North Holland. New York, 1981.
(17) Landau, L. D., & Lifshitz, E. M. Física estadística. Reverté. Barcelona, 1964.
(18) Frolov, V. P., & Novikov, I. D. Black hole physics. Basic concepts and new developments. Kluwer Academic publishers, 1997.
(19) WolframMathWorld. Polylogarithm. Recuperado el 6 de marzo de 2013 de http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/.
Downloads
Published
How to Cite
Issue
Section
Altmetrics
Downloads
License
All articles published in this scientific journal are protected by copyright. The authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits sharing the work with authorship recognition and without commercial purposes.
Readers may copy and distribute the material from this journal issue for non-commercial purposes in any medium, provided the original work is cited and credit is given to the authors and the journal.
Any commercial use of the material from this journal is strictly prohibited without written permission from the copyright holder.
For more information on the copyright of the journal and open access policies, please visit our website.