Efecto de annealing sobre las propiedades estructurales, térmicas y mecánicas de la composición de aleación binaria Al85 Ni 15

Autores/as

  • Sarwar Ibrahim Saleh Erbil Polytechnic University (EPU), Erbil Medical Technical Institute, Erbil, Iraq
  • Musa Gögebakan Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey
  • M. S. Omar Department of Physics, College of science, University of Salahaddin, Erbil, Iraq
  • Hakan Yaykasli Research and Development Center for University-Industry and Public Relations (USKIM), 46100 Kahramanmaras, Turkey
  • Celal Kursun Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey
  • Bestoon Anwer Gozeh College of Education, Shaqlawa, Salahaddin University, Erbil, Iraq

DOI:

https://doi.org/10.15649/2346075X.514

Palabras clave:

Al-Ni binary alloys, Arc melting, Heattreatment, Microstructure and Mechanical properties

Resumen

Introduction: The Al 85-Ni15 alloy with 99.99% purity of Al and Ni were prepared by an arc melting technique system. The annealing effect onthe microstructure properties, phase transformation and micro-hardness for the Al-Ni alloy system were investigated. Material and Methods:
The alloys were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Differential Thermal Analysis (DTA) as well as Vickers micro-hardness measurement. Results and Discussion: The quantitative results confirm that the chemical composition of the alloys is very close to compositions and the microstructures are in typical lamellar morphology. Mechanical properties for the as-prepared samples and subsequently heat-treated samples were measured by a Vickers indenter. Values of the micro-hardness (HV) Conclusions: According the XRD pattern analysis a multi phases produced, such as Al, AlNi3
in room temperature, Al3Ni2, Al0.42Ni0.58 at 200ºC, Al1.1Ni0.9 at 300ºC and Al 0.802Ni0.198, AlNi3 and AlNi at 400ºC, and Al0.802Ni0.198, AlNi3 and AlNi for 500ºC. Similar approached were obtained from the results of SEM and DTA measurements. Annealing treatments are visibly affecting the alloy phase formation with different phases at different temperature. and the elastic modulus (E) of the as prepared sample are 132.9±0.1 kgfmm-2 (1.329±0.1 GPa) and 80.340±0.1 GPa, respectively. Furthermore, the characteristic of the materials plasticity (δH) value was calculated to be 0.85. The micro-hardness values are decrease with the increase of annealing temperatures.

Biografía del autor/a

Sarwar Ibrahim Saleh, Erbil Polytechnic University (EPU), Erbil Medical Technical Institute, Erbil, Iraq

Erbil Polytechnic University (EPU), Erbil Medical Technical Institute, Erbil, Iraq.

Kahramanmaras Sutcu Imam University, Department of Bioscience and Engineering, Kahramanmaras, Turkey.

Musa Gögebakan, Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey

Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey

M. S. Omar, Department of Physics, College of science, University of Salahaddin, Erbil, Iraq

Department of Physics, College of science, University of Salahaddin, Erbil, Iraq

Hakan Yaykasli, Research and Development Center for University-Industry and Public Relations (USKIM), 46100 Kahramanmaras, Turkey

Research and Development Center for University-Industry and Public Relations (USKIM), 46100 Kahramanmaras, Turkey

Celal Kursun, Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey

Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey

Bestoon Anwer Gozeh, College of Education, Shaqlawa, Salahaddin University, Erbil, Iraq

College of Education, Shaqlawa, Salahaddin University, Erbil, Iraq

Referencias

Aindow M, Alpay SP, Liu Y, Mantese JV, Senturk BS. Base metal alloys with self-healing native conductive oxides for electrical contact materials. Applied Physics Letters. 2010; 97(15):152-103. https://doi.org/10.1063/1.3499369

Wu Y, Wang S, Li H, Liu X. A new technique to modify hypereutectic Al-24% Si alloys by a Si-P master alloy. Journal of Alloys and Compounds. 2009; 27(1-2):139-44. https://doi.org/10.1016/j.jallcom.2008.10.015

Zhou J, Duszczyk J, Korevaar BM. Microstructural features and final mechanical properties of the iron-modified Al-20Si-3Cu-1 Mg alloy product processed from atomized powder. Journal of materials science. 1991; 26(11):3041-50. https://doi.org/10.1007/BF01124840

Karaköse E, Keskin M. Microstructure evolution and mechanical properties of intermetallic Ni-xSi (x= 5, 10, 15, 20) alloys. Journal of Alloys and Compounds. 2012; 5: 528:639. https://doi.org/10.1016/j.jallcom.2012.02.165

Mukhtarov SK, Valitov VA, Dudova NR. Thermal stability and mechanical properties of nanostructured nickel based alloy Inconel. Rev.Adv.Mater.Sci. 25 (2010) 219-22

Sheng LY, Guo JT, Tian YX, Zhou LZ, Ye HQ. Microstructure and mechanical properties of rapidly solidified NiAl-Cr (Mo) eutectic alloy doped with trace Dy. Journal of Alloys and Compounds. 2009; 475 (1-2):730-4. https://doi.org/10.1016/j.jallcom.2008.07.109

Dutra AT, Ferrandini PL, Costa CA, Gonçalves MC, Caram R. Growth and solid/solid transformation in a Ni-Si eutectic alloy. Journal of alloys and compounds. 2005; 399(1-2):202-7. https://doi.org/10.1016/j.jallcom.2005.03.039

Bei H, George EP, Pharr GM. Effects of composition on lamellar microstructures of near-eutectic Cr-Cr3Si alloys. Intermetallics. 2003; 11(4):283-9. https://doi.org/10.1016/S0966-9795(02)00251-0

Karaköse E, Keskin M. Microstructure evolution and mechanical properties of intermetallic Ni-xSi (x= 5, 10, 15, 20) alloys. Journal of Alloys and Compounds. 2012; 528:63-9. https://doi.org/10.1016/j.jallcom.2012.02.165

Çadırlı E, Herlach DM, Volkmann T. Characterization of rapidly solidified Ni-Si and Co-Al eutectic alloys in drop tube. Journal of Non-Crystalline Solids. 2010; 356(9-10):461-6. https://doi.org/10.1016/j.jnoncrysol.2009.12.019

Çadırlı E, Herlach DM, Davydov E. Microstructural, mechanical, electrical and thermal characterization of arc-melted Ni-Si and Co-Si alloys. Journal of Non-Crystalline Solids. 2010; 356(33-34):1735-41. https://doi.org/10.1016/j.jnoncrysol.2010.06.005

Skinner DJ, Zedalis M. Elastic modulus versus melting temperature in aluminum based intermetallics. Scripta metallurgica. 1988; 22(11):1783-5. https://doi.org/10.1016/S0036-9748(88)80284-9

Milman YV, Galanov BA, Chugunova SI. Plasticity characteristic obtained through hardness measurement. Acta metallurgica et materialia. 1993; 41(9):2523-32. https://doi.org/10.1016/0956-7151(93)90122-9

Trefilov VI, Mil'man YV, Lotsko DV, Belous AN, Chugunova SI, Timofeeva II, Bykov AI. Studies of mechanical properties of quasicrystalline Al-Cu-Fe phase by the indentation technique. InDoklady Physics 2000; 45(8): pp. 363-366). https://doi.org/10.1134/1.1310723.

Mukhopadhyay NK, Weatherly GC, Embury JD. An analysis of microhardness of single-quasicrystals in the Al-Cu-Co-Si system. Materials Science and Engineering: A. 2001; 315(1-2):202-10.https://doi.org/10.1016/S0921-5093(01)01186-8

Qiang JB, Zhang W, Xie G, Kimura H, Dong C, Inoue A. An in situ bulk Zr58Al9Ni9Cu14Nb10 quasicrystal-glass composite with superior room temperature mechanical properties. Intermetallics. 2007; 15(9):1197-201. https://doi.org/10.1016/j.intermet.2007.02.008

Revista Innovaciencia Facultad de Ciencias Exactas, Físicas y Naturales

Descargas

Publicado

2019-10-25

Cómo citar

Ibrahim Saleh, S. ., Gögebakan, M. ., Omar, M. S., Yaykasli, H. ., Kursun, C. ., & Anwer Gozeh, B. . (2019). Efecto de annealing sobre las propiedades estructurales, térmicas y mecánicas de la composición de aleación binaria Al85 Ni 15. Innovaciencia, 7(1), 1–8. https://doi.org/10.15649/2346075X.514

Número

Sección

Artículo original de investigación e innovacion

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.