SGDWOA: A Novel Approach in Whale Optimisation for Accurate Cell Classification in Oral Squamous Cell Carcinoma Using Machine Learning
DOI:
https://doi.org/10.15649/2346030X.3784Palabras clave:
oral cancer, oral squamous cell carcinoma, histopathological images, AI-based system, machine learning, data preprocessing, resnet 50, random forest, SMOTE, feature scaling, efficient net B5Resumen
Oral squamous cell carcinoma (OSCC), a common head and neck cancer, is often unnoticed but can be identified early. Diagnosing this heterogeneous tumour requires extensive human experience, and artificial intelligence can help to improve diagnosis. This study used novel methodologies based on feature selection and classification in an attempt to obtain good findings for the early detection of OSCC. By using cutting-edge hybrid strategies to extract features and improve classification, this work seeks to bridge the gap among deep learning and machine learning procedures. Initially, preprocessing is done to address artifacts in the OSCC dataset. The first method uses SMOTE oversampling and feature scaling in conjunction with Resnet 50 and Efficientnet B5 models for feature extraction. In the second method, the best feature set is chosen using the Statistic gain Dynamic Remodelled Whale Optimization Algorithm (SDRWOA), and the Random Forest Classifier is then employed to classify cancer types into poor, moderate, and well categories. The finding shows that the proposed model beats the other classifiers by attaining the maximum overall accuracy, recall and F1-score of 98% and precision of 97.6%. In conclusion, the suggested approach advances the development of extremely precise and effective OSCC diagnosis techniques.
Referencias
Warnakulasuriya, S., & Greenspan, J. S. (Eds.). (2020). Textbook of oral cancer: Prevention, diagnosis and management (Vol. 1, pp. 1-452). New York, NY, USA::Springer.
Deshmukh, V., & Shekar, K. (2021). Oral squamous cell carcinoma: Diagnosis and treatment planning. Oral and maxillofacial surgery for the clinician, 1853-1867.
Romano, A., Di Stasio, D., Petruzzi, M., Fiori, F., Lajolo, C., Santarelli, A., & Contaldo, M. (2021). Noninvasive imaging methods to improve the diagnosis of oral carcinoma and its precursors: State of the art and proposal of a three-step diagnostic process. Cancers, 13(12), 2864.
Speight, P. M., Khurram, S. A., & Kujan, O. (2018). Oral potentially malignant disorders: risk of progression to malignancy. Oral surgery, oral medicine, oral pathology and oral radiology, 125(6), 612-627.
Acs, B., Rantalainen, M., & Hartman, J. (2020). Artificial intelligence as the next step towards precision pathology. Journal of internal medicine, 288(1), 62-81.
Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda✰. Technological Forecasting and Social Change, 162, 120392.
Kaba, K., Sarıgül, M., Avcı, M., & Kandırmaz, H. M. (2018). Estimation of daily global solar radiation using deep learning model. Energy, 162, 126-135.
Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation. Energies, 12(22), 4352.
Chen, H., & Sung, J. J. (2021). Potentials of AI in medical image analysis in Gastroenterology and Hepatology. Journal of Gastroenterology and Hepatology, 36(1), 31-38.
Stolte, S., & Fang, R. (2020). A survey on medical image analysis in diabetic retinopathy. Medical image analysis, 64, 101742.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.
Singh, A., Sengupta, S., & Lakshminarayanan, V. (2020). Explainable deep learning models in medical image analysis. Journal of imaging, 6(6), 52.
Sharma, S., & Mehra, R. (2020). Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight. Journal of digital imaging, 33, 632-654.
Tan, H. H., & Lim, K. H. (2019, June). Vanishing gradient mitigation with deep learning neural network optimization. In 2019 7th international conference on smart computing & communications (ICSCC) (pp. 1-4). IEEE.
Tetarbe, A., Choudhury, T., Toe, T. T., & Rawat, S. (2017, December). Oral cancer detection using data mining tool. In 2017 3rd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT) (pp. 35-39). IEEE.
Lalithmani, K., & Punitha, A. (2019). Detection of oral cancer using deep neural based adaptive fuzzy system in data mining techniques. Int J Rec Tech Eng, 7, 397-404.
Tabibu, S., Vinod, P. K., & Jawahar, C. V. (2019). Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Scientific reports, 9(1), 10509.
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9, 611-629.
Rajawat, N., Hada, B. S., Meghawat, M., Lalwani, S., & Kumar, R. (2022). C-covidnet: A cnn model for COVID-19 detection using image processing. Arabian Journal for Science and Engineering, 47(8), 10811-10822.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8, 1-74.
Rahman, T. Y., Mahanta, L. B., Choudhury, H., Das, A. K., & Sarma, J. D. (2020). Study of morphological and textural features for classification of oral squamous cell carcinoma by traditional machine learning techniques. Cancer Reports, 3(6), e1293.
Rahman, T. Y., Mahanta, L. B., Das, A. K., & Sarma, J. D. (2020). Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips. Tissue and Cell, 63, 101322.
Fati, S. M., Senan, E. M., & Javed, Y. (2022). Early diagnosis of oral squamous cell carcinoma based on Histopathological images using deep and hybrid learning approaches. Diagnostics, 12(8), 1899.
Chan, C. H., Huang, T. T., Chen, C. Y., Lee, C. C., Chan, M. Y., & Chung, P. C. (2019). Texture-map-based branch-collaborative network for oral cancer detection. IEEE transactions on biomedical circuits and systems, 13(4), 766-780.
Subhija, E. N., & Reju, V. G. (2023). An image patch selection algorithm for the detection of Oral Squamous Cell Carcinoma using textural and morphological features.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Descargas
Publicado
Cómo citar
Número
Sección
Altmetrics
Descargas
Licencia
Derechos de autor 2024 AiBi Revista de Investigación, Administración e Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La revista ofrece acceso abierto bajo una Licencia Creative Commons Attibution License
Esta obra está bajo una licencia Creative Commons Attribution (CC BY 4.0).