Evaluación de sillas de ruedas motorizadas utilizando un enfoque integrado ARAS-TOPSIS y CRITIC.

Autores/as

DOI:

https://doi.org/10.15649/2346030X.4013

Palabras clave:

Toma de decisiones multicriterio, CRITIC, ARAS, TOPSIS, análisis de sensibilidad, silla de ruedas motorizada, evaluación de productos de asistencia

Resumen

Este trabajo de investigación propone un enfoque matemático innovador para evaluar sillas de ruedas motorizadas mediante la integración de la Evaluación de la Relación Aditiva (ARAS) y el método de la Técnica de Orden de Preferencia por Similitud con la Solución Ideal (TOPSIS), junto con el enfoque de ponderación CRITIC (Importancia de los Criterios a través de la Correlación entre Criterios). Al tener en cuenta varios factores a la vez, la integración de diversos enfoques busca mejorar la precisión y la fiabilidad del proceso de evaluación. Para abordar la situación, el marco modelado tiene en cuenta 14 sillas de ruedas posibles y 7 factores. El enfoque de ponderación CRITIC evalúa el impacto de los criterios, mientras que las metodologías TOPSIS y ARAS calculan por separado la calificación del rendimiento para producir una clasificación de las sillas de ruedas elegidas. Las sillas de ruedas se evalúan utilizando una serie de factores, entre los que se incluyen recomendaciones de expertos e información del mercado B2B en línea. Un coeficiente de correlación de Spearman de 0,9696 confirma la fuerte consistencia entre las clasificaciones basadas en ARAS y TOPSIS. La variante MW-12 destaca como la mejor opción. Se realizó una evaluación de sensibilidad para comprobar la solidez del método propuesto. En la práctica, este enfoque integrado proporciona a los fabricantes información basada en datos para el desarrollo de productos, ayuda a los proveedores de atención sanitaria a realizar compras transparentes y permite a los usuarios finales y a los cuidadores seleccionar las sillas de ruedas que mejor se adaptan a las necesidades de movilidad individuales.

Referencias

[1] S. R. Avutu, S. Paul, and B. V. Reddy, “A review on wheelchair and add-in devices design for the disabled,” Int. J. Biomed. Eng. Technol., vol. 41, no. 1, pp. 35-59, 2023, doi: https://doi.org/10.1504/IJBET.2023.128512.

[2] S. D. Frederick, J. Shaikh-Mohammed, G. Suresh, and S. Sujatha, “Long-term community integration study of an affordable manual standing wheelchair,” Disabil. Rehabil. Assist. Technol., pp. 1–10, Feb. 2024, doi: https://doi.org/10.1080/17483107.2024.2313083.

[3] A. Shkera and V. Patankar, “Navigating active Transit: How built environments shape commuting and leisure journeys,” Case Stud. Transp. Policy., vol. 15, pp. 101161–101161, Mar. 2024, doi: https://doi.org/10.1016/j.cstp.2024.101161.

[4] L. Fishleigh, R. Taylor, G. Hale,and D. S. Bowers, “Factors that affect powered wheelchair use for an adult population: a systematic review,” Disabil. Rehabil. Assist. Technol., pp. 1–14, jan 2024, doi: https://doi.org/10.1080/17483107.2024.2304122.

[5] H. Gheibdoust, S. Gilaninia, and M. Taleghani, “Identification and Prioritization of the Factors Influencing Service Quality in the Hotel Industry by SWARA and ARAS Methods During the COVID-19 Pandemic,” Journal of Quality Assurance in Hospitality & Tourism, pp. 1–23, May 2023, doi: https://doi.org/10.1080/1528008x.2023.2209343.

[6] J. Antunes, Abdollah Hadi-Vencheh, A. Jamshidi, Y. Tan, and P. Wanke, “TEA-IS: A hybrid DEA-TOPSIS approach for assessing performance and synergy in Chinese health care,” Decision Support Systems, vol. 171, pp. 113916–113916, Aug. 2023, doi: https://doi.org/10.1016/j.dss.2022.113916.

[7] M. A. Beheshtinia, F. Bahrami, M. Fathi, and S. Asadi,” Evaluating and prioritizing the healthcare waste disposal center locations using a hybrid multi-criteria decision-making method,” Sci. Rep., vol. 13, no. 1, pp. 15130, 2023, doi: https://doi.org/10.1038/s41598-023-42455-w.

[8] G. Boonsothonsatit, S. Vongbunyong, N. Chonsawat and W. Chanpuypetch, "Development of a Hybrid AHP-TOPSIS Decision-Making Framework for Technology Selection in Hospital Medication Dispensing Processes," in IEEE Access, vol. 12, pp. 2500-2516, 2024, doi: 10.1109/ACCESS.2023.3348754.

[9] W. Chen, S. Zeng, and E. Zhang, “Fermatean Fuzzy IWP-TOPSIS-GRA Multi-Criteria Group Analysis and Its Application to Healthcare Waste Treatment Technology Evaluation,” Sustainability, vol. 15, no. 7, pp. 6056–6056, Mar. 2023, doi: https://doi.org/10.3390/su15076056.

[10] Ö. Deretarla, B. Erdebilli, and M. Gündoğan, “An integrated Analytic Hierarchy Process and Complex Proportional Assessment for vendor selection in supply chain management,” Decis. Anal. J., vol. 6, p. 100155, Mar. 2023, doi: https://doi.org/10.1016/j.dajour.2022.100155.

[11] M. A. Nafteh and M. Shahrokhi, “Improving the COPRAS Multicriteria Group Decision-Making Method for Selecting a Sustainable Supplier Using Intuitionistic and Fuzzy Type 2 Sets,” Jordan J. Mech. Ind. Eng., vol. 17, no. 02, pp. 219–232, Jun. 2023, doi: https://doi.org/10.59038/jjmie/170206.

[12] D. Ghose, S. Pradhan, P. Tamuli, and Shabbiruddin, “Optimal material for solar electric vehicle application using an integrated Fuzzy-COPRAS model,” Energy Sources Part A Recover. Util. Environ. Eff., pp. 1–20, Sep. 2019, doi: https://doi.org/10.1080/15567036.2019.1668879.

[13] Y. Wang, W. Wang, Z. Wang, M. Deveci, S. K. Roy, and S. Kadry, “Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method,” Inf. Sci., vol. 664, pp. 120326–120326, Apr. 2024, doi: https://doi.org/10.1016/j.ins.2024.120326.

[14] K. KARA, G. C. YALÇIN, and S. EDİNSEL, “Warehouse Manager Selection by CRITIC-MULTIMOORA Hybrid Method based on Single-Valued Neutrosophic Sets,” J. Marit. Transp. Logist., vol. 4, no. 1, pp. 48-64, Dec. 2022, doi: https://doi.org/10.52602/mtl.1220345.

[15] A. Menekşe and H. C. Akdağ, “Medical waste disposal planning for healthcare units using spherical fuzzy CRITIC-WASPAS,” Appl. Soft Comput., vol. 144, pp. 110480–110480, Sep. 2023, doi: https://doi.org/10.1016/j.asoc.2023.110480.

[16] S. Mete, M. Yucesan, M. Gul, and E. Ozceylan, “An integrated hybrid MCDM approach to evaluate countries’ COVID-19 risks,” Socio-Econ. Plann. Sci., vol. 90, pp. 101744–101744, Dec. 2023, doi: https://doi.org/10.1016/j.seps.2023.101744.

[17] J. Sun, H. Wang, and Z. Cui, “Alleviating the Bauxite Maritime Supply Chain Risks through Resilient Strategies: QFD-MCDM with Intuitionistic Fuzzy Decision Approach,” Sustainability, vol. 15, no. 10, pp. 8244–8244, May 2023, doi: https://doi.org/10.3390/su15108244.

[18] R. Yadav, M. Singh, A. Meena, Sang Soo Lee, and S. Park, “Selection and ranking of dental restorative composite materials using hybrid Entropy-VIKOR method: An application of MCDM technique,” J. Mech. Behav. Biomed. Mater., vol. 147, pp. 106103–106103, Nov. 2023, doi: https://doi.org/10.1016/j.jmbbm.2023.106103.

[19] A. R. Mishra, P. Rani, D. Pamucar, I. M. Hezam, and A. Saha, “Entropy and discrimination measures based q-rung orthopair fuzzy MULTIMOORA framework for selecting solid waste disposal method,” Environ. Sci. Pollut. Res., vol. 30, no. 5, pp.12988-13011, Sep. 2022, doi: https://doi.org/10.1007/s11356-022-22734-1.

[20] M. R. Z. Banadkouki, “Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS,” Energy, vol. 279, p. 128070, Sep. 2023, doi: https://doi.org/10.1016/j.energy.2023.128070.

[21] M. O. Esangbedo and J. H Wei, “Grey hybrid normalization with period based entropy weighting and relational analysis for cities rankings,” Sci. Rep., vol. 13, no. 1, pp. 13797, Aug. 2023, doi: https://doi.org/10.1038/s41598-023-40954-4.

[22] S. K. Sahoo and B. B. Choudhury, “Optimal selection of an electric power wheelchair using an integrated COPRAS and EDAS approach based on Entropy weighting technique,” Decis. Sci. Lett., vol. 11, no. 1, pp. 21–34, 2022, doi: https://doi.org/10.5267/j.dsl.2021.10.002.

[23] M. J. Haddad and D. A. Sanders, “Selecting a Best Compromise Direction for a Powered Wheelchair Using PROMETHEE,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 2, pp. 228–235, Feb. 2019, doi: https://doi.org/10.1109/tnsre.2019.2892587.

[24] M. Z. Mistarihi, R. A. Okour, and A. A. Mumani, “An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design,” Appl. Soft Comput., vol. 90, p. 106136, May 2020, doi: https://doi.org/10.1016/j.asoc.2020.106136.

[25] V. Delcroix, K. Sedki, and F.-X. Lepoutre, “A Bayesian network for recurrent multi-criteria and multi-attribute decision problems: Choosing a manual wheelchair,” Expert Syst. Appl., vol. 40, no. 7, pp. 2541–2551, Jun. 2013, doi: https://doi.org/10.1016/j.eswa.2012.10.065.

[26] S. K. Sahoo and B. B. Choudhury, “Evaluating Material Alternatives for low cost Robotic Wheelchair Chassis: A Combined CRITIC, EDAS, and COPRAS Framework,” Jordan J. Mech. Ind. Eng., vol. 17, no. 04, pp. 653–669, Dec. 2023, doi: https://doi.org/10.59038/jjmie/170419.

[27] S. K. Sahoo and B. B. Choudhury, “A Fuzzy AHP Approach to Evaluate the Strategic Design Criteria of a Smart Robotic Powered Wheelchair Prototype,” Intell. Syst. Proc. ICMIB Springer Singapore, pp. 451–464, Jan. 2021, doi: https://doi.org/10.1007/978-981-33-6081-5_40.

[28] I. M. Hezam, P. Rani, A. R. Mishra, and A. Alshamrani, “Assessment of autonomous smart wheelchairs for disabled persons using hybrid interval-valued Fermatean fuzzy combined compromise solution method,” Sustain. Energy Technol. Assess., vol. 57, p. 103169, Jun. 2023, doi: https://doi.org/10.1016/j.seta.2023.103169.

[29] J. Chwat, A. Marzec-Przyszlak, P. Szafik, M. Koperska, A. Stabon, A. Guzik-Kopyto, and R. Michnik, “Multi-criteria Analysis of Three 3D Canine Wheelchair Models with the Prototype Development,” Innov. Biomed. Eng., vol. 875, pp. 3-10, 2023, doi: https://doi.org/10.1007/978-3-031-52382-3_1.

[30] D. Diakoulaki, G. Mavrotas, and L. Papayannakis, “Determining objective weights in multiple criteria problems: The critic method,” Comput. Oper. Res., vol. 22, no. 7, pp. 763–770, Aug. 1995, doi: https://doi.org/10.1016/0305-0548(94)00059-H.

[31] E. K. Zavadskas and Z. Turskis, “A NEW ADDITIVE RATIO ASSESSMENT (ARAS) METHOD IN MULTICRITERIA DECISION‐MAKING / NAUJAS ADITYVINIS KRITERIJŲ SANTYKIŲ ĮVERTINIMO METODAS (ARAS) DAUGIAKRITERINIAMS UŽDAVINIAMS SPRĘSTI,” Technol. Econ. Dev. Econ., vol. 16, no. 2, pp. 159–172, Jun. 2010, doi: https://doi.org/10.3846/tede.2010.10.

[32] C.L. Hwang,and A. S. M. Masud, “Multiple objective decision making—methods and applications: a state-of-the-art survey,” Springer Science & Business Media. Vol. 164, 2012.

[33] A. Bhattacharya, B. Sarkar, and S. K. Mukherjee, “Integrating AHP with QFD for robot selection under requirement perspective,” Int. J. Prod. Res., vol. 43, no. 17, pp. 3671–3685, Sep. 2005, doi: https://doi.org/10.1080/00207540500137217.

Descargas

Publicado

01-05-2025

Cómo citar

[1]
P. R. Dhal, B. B. Choudhury, and S. K. Sahoo, “Evaluación de sillas de ruedas motorizadas utilizando un enfoque integrado ARAS-TOPSIS y CRITIC”., AiBi Revista de Investigación, Administración e Ingeniería, vol. 13, no. 2, pp. 1–14, May 2025, doi: 10.15649/2346030X.4013.

Descargas

Los datos de descarga aún no están disponibles.

Número

Sección

General

Artículos similares

1-10 de 206

También puede Iniciar una búsqueda de similitud avanzada para este artículo.