Transferencia electrónica homogénea de clorofila y su derivado clorofilina en un electrodo de oro

Autores/as

  • Alhasan H Department of Chemistry, Environmental Research and Studies Centre, University of Babylon
  • Alahmadi N Department of Chemistry, Faculty of Sciences, University of Jeddah, Kingdom of Saudi Arabia
  • Wadhawan J Faculty of Science and Engineering, School of Engineering and Computer Science, University of Hull, United Kingdom

DOI:

https://doi.org/10.15649/2346075X.751

Palabras clave:

Homogeneous Electron Transfer, Chlorophyll, Chlorophyllin, Gold electrode

Resumen

Introduction: Chlorophyll is a light harvesting pigment, which absorbs light in the visible spectrum of sunlight and promotes electron transfer, Chlorophyllin (CHL) is One of the most important derivative molecules of chlorophyll. Nowadays, chlorophyll pigment and its derivatives are utilised in organic photosynthetic solar cells for their desirable photovoltaic properties. Cyclic voltammetry (CV) is an essential technique. It is extensively used to study electroactive species to interpret the intermediates of reactions, supply information about the thermodynamics of oxidation-reduction reactions and elucidate the kinetics of electron transfer reactions. Materials and Methods: Prior to the electrochemical study, the working gold (Au) electrode surface was prepared by immersing it in the various concentrations of chlorophyllin for a period time. The electrolyte was degassed by using N2 for approximately 30 minutes inside a Faraday cage before any electrochemical experiment was performed. A three electrode system was used with, Ag/AgCl as a reference electrode, graphite
as a counter and the working electrode (Au). Results and Discussion: As a route to develop new chemical systems for artificial photosynthesis, this work reports the effectiveness of different parameters in transferring electrons between chlorophyllin (CHL) pigment and the working electrode surface (gold). These parameters such as the adsorption time, the electrolyte nature and concentration and chlorophyllin concentration are investigated. The use of chlorophyllin as a redox mediator is examined, with a gold electrode being employed. The importance of gold electrode surface preparation in determining the mechanism of redox is described, and the environment of adsorption process of the different concentrations of chlorophyllin on the surface of the gold electrode has been elucidated in this study. Conclusiones: The electrochemical method showed that the cyclic voltammetry responses of studied adsorption chlorophyllin pigment on the gold electrode were more efficient. In addition, the redox reaction was successful electrochemically in aqueous solution than
the organic solution. It was suggested that electrons reduce to the chlorophyllin pigment by adding active species in the bulk solution homogeneous transfer. Finally, detections of chl on spinach leaves using various methods are reported.

Biografía del autor/a

Alhasan H, Department of Chemistry, Environmental Research and Studies Centre, University of Babylon

Department of Chemistry, Environmental Research and Studies Centre, University of Babylon

Alahmadi N, Department of Chemistry, Faculty of Sciences, University of Jeddah, Kingdom of Saudi Arabia

Department of Chemistry, Faculty of Sciences, University of Jeddah, Kingdom of Saudi Arabia

Wadhawan J, Faculty of Science and Engineering, School of Engineering and Computer Science, University of Hull, United Kingdom

Faculty of Science and Engineering, School of Engineering and Computer Science, University of Hull, United Kingdom

Referencias

Polo AS, Murakami Iha NY. Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Sol Energy Mater Sol Cells, . 2006;90(13):1936-44. https://doi.org/10.1016/j.solmat.2006.02.006

Sinha K, Saha PD, Datta S. Extraction of natural dye from petals of Flame of forest (Butea monosperma) flower: Process optimization using response surface methodology (RSM). Dyes Pigments,. 2012;94(2):212-6. https://doi.org/10.1016/j.dyepig.2012.01.008

Al-Bat'hi SA, Alaei I, Sopyan I. Natural photosensitizers for dye sensitized solar cells. International Journal of Renewable Energy Research. 2013;3(1):138-43.

Abdel-Latif MS, El-Agez TM, Taya SA, Batniji AY, El-Ghamri HS. Plant seeds-based dye-sensitized solar cells. Mater Sci Appl, . 2013;4(09):516. https://doi.org/10.4236/msa.2013.49063

Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev, . 2003;4(2):145-53. https://doi.org/10.1016/S1389-5567(03)00026-1

Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy, . 2007;91(7):566-71. https://doi.org/10.1016/j.solmat.2006.11.005

Hao S, Wu J, Huang Y, Lin J. Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy. 2006;80(2):209-14. https://doi.org/10.1016/j.solener.2005.05.009

Luque A, Hegedus S. Handbook of photovoltaic science and engineering: John Wiley & Sons; 2011. https://doi.org/10.1002/9780470974704

Yazie N, Worku D, Reda A. Natural dye as light-harvesting pigments for quasi-solid-state dye-sensitized solar cells. Mater RenewSustain Energy,. 2016;5(3):13. https://doi.org/10.1007/s40243-016-0077-x

Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ. Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode Nerine. J Phys Chem,. 1997;101:9342-51. https://doi.org/10.1021/jp972197w

Nwanya A, Ugwuoke P, Ejikeme P, Oparaku O, Ezema F. Jathropha curcas and citrus aurantium leaves dye extract for use in dye sensitized solar cell with TiO2 films. Int J Electrochem Sci, . 2012;7:11219-35.

Li Y, Ku S-H, Chen S-M, Ali MA, AlHemaid FM. Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized solar cells. Int J Electrochem Sci,. 2013;8(1):1237-45.

Tumolo T, Lanfer-Marquez UM. Copper chlorophyllin: A food colorant with bioactive properties? Food Res Int, . 2012;46(2):451-9. https://doi.org/10.1016/j.foodres.2011.10.03

Scheer H. Structure and occurence of chlorophylls. 1991.

Kephart JC. Chlorophyll derivatives-Their chemistry? commercial preparation and uses. Econ Bot. 1955;9(1):3-38. https://doi.org/10.1007/BF02984956

Robinson DS. Food-biochemistry and nutritional value: Longman Scientific & Technical; 1987.

Mortensen A, Geppel A. HPLC-MS analysis of the green food colorant sodium copper chlorophyllin. Innov food sci & emerg Technol, . 2007;8(3):419-25. https://doi.org/10.1016/j.ifset.2007.03.018

Spikes JD, Bommer JC. Chlorophyll and related pigments as photosensitizers in biology and medicine. Chlorophylls. 1991:1181-204.

Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, et al. Effect of oral milrinone on mortality in severe chronic heart failure. New England Journal of Medicine. 1991;325(21):1468-75. https://doi.org/10.1056/NEJM199111213252103

Pemberton R, Amine A, Hart JP. Voltammetric behavior of chlorophyll a at a screen‐printed carbon electrode and its potential role as a biomarker for monitoring fecal contamination. Anal Lett,. 2004;37(8):1625-43. https://doi.org/10.1081/AL-120037592

Fajer J, Borg D, Forman A, Felton R, Dolphin D, Vegh L. The cation radicals of free base and zinc bacteriochlorin, bacteriochlorophyll, and bacteriopheophytin. Proc Natl Acad Sci, . 1974;71(3):994-8. https://doi.org/10.1073/pnas.71.3.994

Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T. Redox potential of chlorophyll d in vitro. Biochim Biophys Acta, Bioenerg, . 2007;1767(6):596-602. https://doi.org/10.1016/j.bbabio.2007.02.015

Geskes C, Meyer M, Fischer M, Scheer H, Heinze J. Electrochemical investigation of modified photosynthetic pigments. J Phys Chem,. 1995;99(50):17669-72. https://doi.org/10.1021/j100050a001

Vernon LP, Seely GR. The chlorophylls: Academic press; 2014.

Zuber H, Cogdell RJ. Structure and organization of purple bacterial antenna complexes. Anoxygenic photosynthetic bacteria: Springer; 1995. p. 315-48. https://doi.org/10.1007/0-306-47954-0_16

Parusel AB, Grimme S. A theoretical study of the excited states of chlorophyll a and pheophytin a. J Phys Chem B,. 2000;104(22):5395-8. https://doi.org/10.1021/jp000346w

İnanç AL. Chlorophyll: Structural Properties, Health Benefits and Its Occurrence in Virgin Olive Oils. Academic Food Journal/Akademik GIDA,. 2011.

Chitta R, D'Souza F. Self-assembled tetrapyrrole-fullerene and tetrapyrrole-carbon nanotube donor-acceptor hybrids for light induced electron transfer applications. J Mater Chem,. 2008;18(13):1440-71. https://doi.org/10.1039/b717502g

Barazzouk S, Kamat PV, Hotchandani S. Photoinduced Electron Transfer between Chlorophyll a and Gold Nanoparticles. The Journal of Physical Chemistry B. 2005;109(2):716-23. https://doi.org/10.1021/jp046474s

Wiederrecht GP, Svec WA, Niemczyk MP, Wasielewski MR. Femtosecond transient grating studies of chlorophylls and a chlorophyll-based electron donor-acceptor molecule. J Phys Chem, . 1995;99(21):8918-26. https://doi.org/10.1021/j100021a069

Novak I, Komorsky-Lovrić Š. Square-Wave Voltammetry of Sodium Copper Chlorophyllin on Glassy-Carbon and Paraffin-Impregnated Graphite Electrode. Electroanalysis. 2012;24(10):1957-65. https://doi.org/10.1002/elan.201200315

Wrzosek B, Bukowska J. Molecular structure of 3-amino-5-mercapto-1, 2, 4-triazole self-assembled monolayers on Ag and Au surfaces. J Phys Chem C,. 2007;111(46):17397-403. https://doi.org/10.1021/jp075442c

Lee S, Park J, Ragan R, Kim S, Lee Z, Lim DK, et al. Self-assembled monolayers on Pt (111): molecular packing structure and strain effects observed by scanning tunneling microscopy. J Am Chem Soc,. 2006;128(17):5745-50. https://doi.org/10.1021/ja058037c

Seger B, Kamat PV. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C,. 2009;113(19):7990-5. https://doi.org/10.1021/jp900360k

Nicol MJ. The anodic behaviour of gold. Gold Bull, . 1980;13(2):46-55.https://doi.org/10.1007/BF03215452

Tremiliosi-Filho G, Dall'Antonia LH, Jerkiewicz G. Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions. J Electroanal Chem, . 2005;578(1):1-8. https://doi.org/10.1016/j.jelechem.2004.12.007

Montilla F, Morallon E, Vázquez J. Electrochemical behaviour of benzoic acid on platinum and gold electrodes. Langmuir, . 2003;19(24):10241-6. https://doi.org/10.1021/la0346705

Zhao G-C, Zhang L, Wei X-W, Yang Z-S. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem Commun. 2003;5(9):825-9. https://doi.org/10.1016/j.elecom.2003.07.006

Cheng G, Zhao J, Tu Y, He P, Fang Y. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal Chim Acta, . 2005;533(1):11-6. https://doi.org/10.1016/j.aca.2004.10.044

Goyal RN, Gupta VK, Bachheti N, Sharma RA. Electrochemical Sensor for the Determination of Dopamine in Presence of High Concentration of Ascorbic Acid Using a Fullerene‐C60 Coated Gold Electrode. Electroanal, . 2008;20(7):757-64. https://doi.org/10.1002/elan.200704073

Bard AJ. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem,. 1979;10(1):59-75. https://doi.org/10.1016/0047-2670(79)80037-4

Wang J. Analytical electrochemistry: John Wiley & Sons; 2006. https://doi.org/10.1002/0471790303

Guadalupe AR, Abruna HD. Electroanalysis with chemically modified electrodes. Anal Chem,. 1985;57(1):142-9. https://doi.org/10.1021/ac00279a036

Wring SA, Hart JP. Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review. Analyst,. 1992;117(8):1215-29. https://doi.org/10.1039/an9921701215

Inoue T, Kirchhoff JR. Electrochemical Detection of Thiols with a Coenzyme Pyrroloquinoline Quinone Modified Electrode. Anal Chem, . 2000;72(23):5755-60. https://doi.org/10.1021/ac000716c

Goyal RN, Gupta VK, Oyama M, Bachheti N. Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem Commun, . 2005;7(8):803-7. https://doi.org/10.1016/j.elecom.2005.05.005

Yang W, Justin Gooding J, Brynn Hibbert D. Characterisation of gold electrodes modified with self-assembled monolayers of l-cysteine for the adsorptive stripping analysis of copper. J Electroanal Chem, . 2001;516(1-2):10-6. https://doi.org/10.1016/S0022-0728(01)00649-0

Dickinson EJ, Limon-Petersen JG, Rees NV, Compton RG. How much supporting electrolyte is required to make a cyclic voltammetry experiment quantitatively "diffusional"? A theoretical and experimental investigation. The Journal of Physical Chemistry C. 2009;113(25):11157-71. https://doi.org/10.1021/jp901628h

Kalinowski M. Ion-pair effects in electrochemistry of aromatic compounds influence of supporting electrolyte cations on half-wave potentials of the ketone-ketyl radical anion systems. Chemical Physics Letters. 1970;7(1):55-6. https://doi.org/10.1016/0009-2614(70)80247-0

Da Silva LM, De Faria LA, Boodts JF. Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim Acta. 2003;48(6):699-709. https://doi.org/10.1016/S0013-4686(02)00739-9

R. D. Sandiningtyas VS, editor. Proceedings of the Third International Conference on Mathematics and Natural Sciences; Isolation of Chlorophyll a from spinach and its modification using Fe2+ in Photostability study 2010.

Ciesielski PN, Faulkner CJ, Irwin MT, Gregory JM, Tolk NH, Cliffel DE, et al. Enhanced photocurrent production by photosystem I multilayer assemblies. Advanced Functional Materials. 2010;20(23):4048-54. https://doi.org/10.1002/adfm.201001193

Rozkiewicz DI, Ravoo BJ, Reinhoudt DN. Reversible covalent patterning of self-assembled monolayers on gold and silicon oxide surfaces. Langmuir. 2005;21(14):6337-43. https://doi.org/10.1021/la050438i

Reeves SG, Hall DO. Higher plant chloroplasts and grana: General preparative procedures (excluding high carbon dioxide fixation ability chloroplasts). Methods in Enzymology (USA). 1980. https://doi.org/10.1016/S0076-6879(80)69010-7

Baba K, Itoh S, Hastings G, Hoshina S. Photoinhibition of photosystem I electron transfer activity in isolated photosystem I preparations with different chlorophyll contents. Photosynth Res. 1996;47(2):121-30. https://doi.org/10.1007/BF00016175

Housecroft CE, Constable EC. Chemistry: An introduction to organic, inorganic and physical chemistry: Pearson education; 2010.

Wu Z, Li M, Mullins DR, Overbury SH. Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption. ACS Catalysis. 2012;2(11):2224-34. https://doi.org/10.1021/cs300467p

Housecroft CE. Chemistry an introduction to organic, inorganic and physical chemistry. In: Constable EC, editor. 4th ed. ed. Harlow: Prentice Hall; 2010.

Bard AJ, Faulkner LR. Fundamentals and applications. Electrochemical Methods, 2nd ed; Wiley: New York. 2001.

Revista Innovaciencia Facultad de Ciencias Exactas, Físicas y Naturales

Descargas

Publicado

2019-10-25

Cómo citar

H, A. ., N, A. ., & J, W. (2019). Transferencia electrónica homogénea de clorofila y su derivado clorofilina en un electrodo de oro. Innovaciencia, 7(1), 1–17. https://doi.org/10.15649/2346075X.751

Número

Sección

Artículo de investigación científica y tecnológica

Altmetrics

Descargas

Los datos de descargas todavía no están disponibles.