Análisis de la potencial estructura de mercado y de negocio de la tecnología emergente Movilidad Aérea Urbana
DOI:
https://doi.org/10.15649/2346030X.3989Palabras clave:
movilidad aérea urbana, modelos de negocio, mercado de tecnología emergente, innovación tecnológicaResumen
La Movilidad Aérea Urbana es un concepto novedoso que se prevé revolucionará el transporte en las ciudades. Esta alternativa de trasporte de pasajeros y carga ofrecerá servicios de transporte aéreo a nivel urbano e interurbano. Desde hace unos pocos años la academia viene trabajando en la divulgación de todos los componentes y conceptos de esta tecnología emergente. Luego de una exhaustiva revisión de la bibliografía, se encuentra una rica y variada producción de la temática en casi todos los conceptos, salvo en el de negocios. Por ello, en este artículo de revisión tiene el objetivo se presentar perspectivas relevantes para comprender el entorno empresarial futuro de la Movilidad Aérea Urbana. Por ello, a nivel resultado, por un lado se presenta la potencial estructura y dimensión económica del futuro mercado de este sistema de transporte emergente, y, por otro lado, se describen los posibles modelos de negocio a surgir, una vez el sistema inicie operaciones. Como conclusión del estudio se puede afirmar que los planteamientos de los potenciales modelos de negocio de esta tecnología emergente técnicamente verificables y económicamente viables están recién en su fase inicial, pero se prevé una muy rápida puesta en marcha de algunos modelos de negocio una vez la Movilidad Aérea Urbana tenga las autorizaciones (regulatorias) para iniciar sus primeras operaciones comerciales.
Referencias
[1] A. Sinha, A. y S. Rajendran, “Study on facility location of air taxi skyports using a prescriptive analytics approach”, Transportation Research Interdisciplinary Perspectives, 18, 100761, 2023, DOI: 10.1016/j.trip.2023.100761.
[2] B. Ahn y H. Hwang, (2022). “Design Criteria and accommodating capacity analysis of vertiports for urban air Mobility and its application at Gimpo Airport in Korea”, Applied Sciences, 12, 6077, 2022, DOI: 10.3390/app12126077.
[3] J. Pons-Prats, T. Zivojinovic y J. Kuljanin, “On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm”, Transportation Research Part E, 166, 102868, 2022, DOI: 10.1016/j.tre.2022.102868.
[4] A. Cohen y S. Shaheen, “Urban Air Mobility: Opportunities and Obstacles”, Working Paper, Transportation Sustainability Research Center, University of California (Berkeley), 2021.
[5] T. Biehle, “Social Sustainable Urban Air Mobility in Europe”, Sustainability, 14, 9312, 2022, DOI: 10.3390/su14159312.
[6] A. Smirnov, E. Smolokurov, R. Bolshakov y V. Parshin, “Problems and prospects for the development of urban air mobility on the basis of unmanned transport systems”, Transportation Research Procedia, 68, 151–159, 2023.
[7] Q. Long, J. Ma, F. Jiang y C. Webster, “Demand analysis in urban air mobility: A literature review”, Journal of Air Transport Management, 112, 102436, 2023, DOI: 10.1016/j.jairtraman.2023.102436.
[8] M. Brunelli, C. Ditta y M. Postorino, “New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity”, Journal of Air Transport Management, 112, 102460, 2023, DOI: 10.1016/j.jairtraman.2023.102460.
[9] K. Schweiger y L. Preis, “Urban Air Mobility: systematic review of scientific publications and regulations for vertiport design and operations”, Drones, 6, 179, 2022, DOI: 10.3390/drones6070179.
[10] L. Garrow, B. German y C. Leonard, “Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research”, Transportation Research Part C, 132, 103377, 2021, DOI: 10.1016/j.trc.2021.103377.
[11] M. Salama, R. Bahsoon y N. Bencomo, “Managing Trade-offs in Self-Adaptive Software Architectures: A Systematic Mapping Study”, en Mistrik et al. (Ed.), Managing Trade-offs in Adaptable Software Architectures (249-297), 2017, Amsterdam: Elsevier, DOI: 10.1016/B978-0-12-802855-1.00011-3.
[12] B. Barn, S. Barat y T. Clark, “Conducting Systematic Literature Reviews and Systematic Mapping Studies”, Proceedings of the 10th Innovations in Software Engineering Conference, 2017, DOI: 10.1145/3021460.3021489.
[13] K. James, N. Randall y N. Haddaway, “A methodology for systematic mapping in environmental sciences”, Environmental Evidence, 5, 7, 2016, DOI: 10.1186/s13750-016-0059-6.
[14] T. Taipalus, “Systematic Mapping Study in Information Systems Research”, Journal of the Midwest Association for Information Systems, 1, 2, 2023, DOI: 10.17705/3jmwa.000079.
[15] S. Haakonsen, A. Ronnquist y N. Labonnote, “Fifty years of shape grammars: A systematic mapping of its application in engineering and architecture”, International Journal of Architectural Computing, 21(1), 5-22, 2023, DOI: 10.1177/14780771221089882.
[16] EASA, “Vertiports”, Cologne: European Union Aviation Safety Agency, 2022.
[17] FAA, “Urban Air Mobility (UAM). Concept of Operations”, Washington DC: Federal Aviation Administration, U.S. Department of Transportation, 2023.
[18] NASA, “Urban Air Mobility Market Study”, Washington DC: National Aeronautics and Space Administration, 2018, https://ntrs.nasa.gov/citations/20190000519.
[19] A. Anand, H. Kaur, C. Justin, T. Zaidi y D. Mavris, “A scenario-based evaluation of global urban air mobility demand”, AIAA Scitech Forum, 2021, DOI: 10.2514/6.2021-1516.
[20] N. Polaczyk, E. Trombino, P. Wei y M. Mitici, “A review of current technology and research in urban on-demand air mobility applications”, 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium, Jan. 28-Feb. 1, 2019, Mesa (USA).
[21] M. Fu, R. Rothfeld y C. Antoniou, “Exploring preferences for transportation modes in an Urban Air Mobility environment: Munich case study”, Transportation Research Record, 2019, DOI: 10.1177/0361198119843858.
[22] ASD, “Urban air mobility and sustainable development”, Brussels: Aerospace, Security and Defence Industries Association of Europe, 2023.
[23] M. Gouveia, V. Dias y J. Silva, “Management of urban air mobility for sustainable and smart cities: Vertiport networks using a user-centred design”, Journal of Airline and Airport Management, 12(1), 15-28, 2022, DOI: 10.3926/jairm.207.
[24] BOEING, “Flight path for the future of mobility”, Boeing Company (USA), 2018, https://acortar.link/zcfCpF.
[25] AIRBUS, “Rethinking urban air mobility”, Toulouse: AIRBUS, 2017, https://acortar.link/yhOgpw.
[26] B. Brelje y J. Martins, “Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches”, Progress in Aerospace Sciences, 104, 1-19, 2019, DOI: 10.1016/j.paerosci.2018.06.004.
[27] FAA, “Memorandum. Vertiport Design”, Washington DC: Federal Aviation Administration, U.S. Department of Transportation, 2022.
[28] S. Birrell, W. Payre, K. Zdanowicz y P. Herriotts, “Urban air mobility infrastructure design: Using virtual reality to capture user experience within the world’s first urban airpor”, Applied Ergonomics, 105, 103843, 2022, DOI: 10.1016/j.apergo.2022.103843.
[29] E. Lim y H. Hwang, “The selection of vertiport location for on-demand mobility and its application to Seoul metro area”, International Journal of Aeronautical and Space Sciences, 2019, DOI: 10.1007/s42405-018-0117-0.
[30] L. Preis, “Quick Sizing, Throughput Estimating and Layout Planning for VTOL Aerodromes – A Methodology for Vertiport Design”, AIAA Aviation Forum, August 2-6, 2021, DOI: 10.2514/6.2021-2372.
[31] A. Straubinger, R. Rothfeld, M. Shamiyeh, K. Büchter, J. Kaiser y K. Plötner, “An overview of current research and developments in urban air mobility–setting the scene for UAM introduction”, Journal of Air Transport Management, 87, 101852, 2020, DOI: 10.1016/j.jairtraman.2020.101852.
[32] S. Verma, V. Duichinos, R. Wood, A. Farrahi, R. Mogford, M. Shyr y R. Ghatas, “Design and Analysis of Corridors for UAM Operations”, AIAA/IEEE Digital Avionics Systems Conference – Proceedings, 2022, DOI: 10.1109/DASC55683.2022.9925820.
[33] P. Pradeep y P. Wei, “Heuristic approach for arrival sequencing and scheduling for eVTOL aircraft in on-demand urban air mobility”, IEEE/AIAA 37th Digital Avionics Systems Conference, 2018, DOI: 10.1109/DASC.2018.8569225.
[34] I. Kleinbekman, M. Mitici y P. Wei, “eVTOL arrival sequencing and scheduling for on-demand urban air mobility”, IEEE/AIAA 37th Digital Avionics Systems Conference, 2018, DOI: 10.1109/DASC.2018.8569645.
[35] Z. Zhou, J. Chen y Y. Liu, “Optimized landing of drones in the context of congested air traffic and limited vertiports”, IEEE Transactions on Intelligent Transportation Systems, 22, 9, 6007-6017, 2020, DOI: 10.1109/TITS.2020.3040549.
[36] V. Nneji, A. Stimpson, M. Cummings y K. Goodrich, “Exploring concepts of operations for on-demand passenger air transportation”, 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver (Colorado), 2017, DOI: 10.2514/6.2017-3085.
[37] A. Cohen, S. Shaheen y E. Farrar, “Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges”, IEEE Transactions on Intelligent Transportation Systems, 22(9), 6074-6087, 2021, DOI: 10.1109/TITS.2021.3082767.
[38] K. Bulanowski, D. Gillis, E. Fakhraian, S. Lima. y I. Semanjski, “AURORA—Creating Space for Urban Air Mobility in Our Cities”, 6th Conference on Sustainable Urban Mobility, August 31-September 2, 2022, Skiathos Island (Greece).
[39] MITRE, “Urban air mobility landscape report”, Bedford (Massachusetts): MITRE, 2018.
[40] KPMG, “Integrating air mobility into wider infrastructure”, Aviation 2030 series, White Paper, KPMG, 2023. https://assets.kpmg.com/content/dam/kpmg/ie/pdf/2023/04/ie-integrating-air-mobility-into-wider-infrastructure.pdf.
[41] A. Straubinger, J. Michelmann y T. Biehle, “Business model options for passenger urban air mobility”, CEAS Aeronautical Journal, 12, 361–380, 2021, DOI: 10.1007/s13272-021-00514-w.
[42] R. Rothfeld, A. Straubinger, M. Fu, C. Al Haddad y C. Antoniou, “Urban air mobility”, en Antoniou, C., Efthymiou, D. y Chaniotakis, E. (Ed.), Demand for Emerging Transportation Systems (267-284), Amsterdam: Elsevier, 2019.
[43] NASA, “eVTOL Passenger Experience Final Report”, Washington D.C.: NASA, 2019. https://ntrs.nasa.gov/api/citations/20190028296/downloads/20190028296.pdf.
[44] NASA, “UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4”, Washington D.C.: National Aeronautics and Space Administration, 2020, https://acortar.link/8Tw0Fb.
[45] NASA, “Regional Air Mobility”, Washington DC: National Aeronautics and Space Administration, 2021. https://sacd.larc.nasa.gov/sacd/wp-content/uploads/sites/167/2021/04/2021-04-20-RAM.pdf.
[46] R. Goyal, C. Reiche, C. Fernando y A. Cohen, “Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets”, Sustainability, 13(13), 7421, 2021, DOI: 10.3390/su13137421.
[47] U. Kluge, A. Paul, H. Ureta y K. Ploetner, “Profiling Future Air Transport Passengers in Europe”, Proceedings of 7th Transport Research Arena (TRA), 2018, Vienna, Austria.
[48] D. Fadhil, “A GIS-based analysis for selecting ground infrastructure locations for urban air mobility”, Master Thesis, Technical University of Munich (Germany), 2018.
[49] R. Goyal y A. Cohen, “Advanced Air Mobility: Opportunities and Challenges Deploying eVTOLs for Air Ambulance Service”, Applied Sciences, 12(3), 1183, 2022, DOI: 10.3390/app12031183.
[50] Porsche Consulting, “The Future of Vertical Mobility”, Stuttgart: Porsche Consulting, 2018.
[51] Porsche Consulting, “The economics of vertical mobility”, Stuttgart: Porsche Consulting, 2021.
[52] EY, “Opportunities to grow the territory drone industry”, Sidney: Ernst and Young, 2020.
[53] Global AAM/UAM Market Map, “Advanced and Urban Air Mobility. What the world is planning”, 2024, https://www.globalairmobilitymarket.com/.
[54] Unmanned Airspace, “The global timetable for AAM and UAM launch and development”, 2024. https://www.unmannedairspace.info/aam-uam-route-and-programme-news/25035/.
[55] Deloitte, “Advanced air mobility”, Deloitte Research Center for Energy & Industrials, 2021, https://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/eri-advanced-air-mobility.pdf.
[56] ASSURE, “Urban Air Mobility Study: Safety Standards, Aircraft Certification, and Impact on Market Feasibility and Growth Potentials”, Technical Report, Alliance for System Safety of UAS through Research Excellence, 2022, https://acortar.link/eLqGus.
[57] D. Thipphavong, “Urban Air Mobility Airspace Integration Concepts and Considerations”, Aviation Technology, Integration, and Operations Conference, June 25-29, 2018, Atlanta (Georgia), USA.
[58] Roland Berger, “Urban air mobility. The rise of a new mode of transportation”, Munich: Roland Berger, 2018.
[59] Roland Berger, “Urban Air Mobility”, Munich: Roland Berger, 2020.
[60] F. Liao, E. Molin, H. Timmermans y B. van Wee, “Consumer preferences for business models in electric vehicle adoption”, Transport Policy, 73, 12-24, 2019, DOI: 10.1016/j.tranpol.2018.10.006.
[61] IFAR, “2019 IFAR White Paper on Urban Air Mobility”, Montreal: International Forum for Aviation Research (IFAR), 2019.
[62] I. Gokasar y G. Gunay, “Mode choice behavior modeling of ground access to airports: A case study in Istanbul, Turkey”, Journal of Air Transport Management, 59, 1-7, 2017, DOI: 10.1016/j.jairtraman.2016.11.003.
[63] O. Díaz Olariaga, A. Gavilán Orozco. y C. Ortíz Prieto, “Accesibilidad vial al aeropuerto. El caso del Aeropuerto de Bogotá-El Dorado”, XX Congreso Panamericano de Ingeniería de Tránsito, Transporte y Logística, 26-28 septiembre 2018, Medellín (Colombia).
[64] J. Ribeiro, G. Borille, M. Caetano y E. Silva, “Repurposing urban air mobility infrastructure for sustainable transportation in metropolitan cities: A case study of vertiports in Sao Paulo, Brazil”, Sustainable Cities and Society, 98, 104797, 2023, DOI: 10.1016/j.scs.2023.104797.
[65] C. Torens, “HorizonUAM: Safety and Security Considerations for Urban Air Mobility”, AIAA Aviation Forum, August 2-6, 2021, DOI: 10.2514/6.2021-3199.
[66] M. Tojal, H. Hesselink, A. Fransoy, E. Ventas, V. Gordo y Y. Xu, “Analysis of the definition of Urban Air Mobility – how its attributes impact on the development of the concept”, Transportation Research Procedia, 59, 3–13, 2021.
[67] EUROCONTROL, “UAS ATM Integration”, Brussels: EUROCONTROL, 2018.
[68] M. Kreimeier, P. Strathoff, D. Gottschalk y E. Stumpf, “Economic Assessment of Air Mobility On-Demand Concepts”, Journal of Air Transportation, 26, 1, 2018, DOI: 10.2514/1.D0058.
[69] M. Kreimeier. y E. Stumpf, “Market volume estimation of thin-haul On-demand air mobility services in Germany”, 17th AIAA Aviation Technology, Integration, and Operations Conference, Dever (Colorado), 2017, DOI: 10.2514/6.2017-3282.
[70] L. Richardson, “Performing the sharing economy”, Geoforum, 67, 121–129, 2015. DOI: 10.1016/j.geoforum.2015.11.004.
[71] T. Ravich, “On-Demand Aviation: Governance Challenges of Urban Air Mobility”, Penn State Law Review, 124(3), 657-689, 2020, https://elibrary.law.psu.edu/pslr/vol124/iss3/2.
[72] T. Ravich, S. Bush y L. Campbell, “Advanced Air Mobility”, White Paper, Conference: Will Law Lift or Ground a New Era of Human Transportation?, 2023, https://acortar.link/4rdUZO.
[73] P. Coppola, F. De Fabis y F. Silvestri, “Urban Air Mobility (UAM): Airport shuttles or city-taxis?”, Transport Policy, 150, 24–34, 2024, DOI: 10.1016/j.tranpol.2024.03.003.
[74] S. Boddupalli, L. Garrow, B. German y J. Newman, “Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service”, Transportation Research Part A, 181, 104000, 2024, DOI: 10.1016/j.tra.2024.104000.
[75] H. Mostofi, T. Biehle, R. Kellermann y H. Dienel, “Modelling public attitude towards air taxis in Germany”, Transportation Research Interdisciplinary Perspectives, 24, 101045, 2024, DOI: 10.1016/j.trip.2024.101045.
[76] L. Riza, R. Bruehl, H. Fricke y P. Planing, “Will air taxis extend public transportation? A scenario-based approach on user acceptance in different urban settings”, Transportation Research Interdisciplinary Perspectives, 23, 101001, 2024, DOI: 10.1016/j.trip.2023.101001.
[77] C. Al Haddad, E. Chaniotakis, A. Straubinger, K. Plötner y C. Antoniou, “Factors affecting the adoption and use of urban air mobility”, Transportation Research Part A, 132, 696–712, 2020, DOI: 10.1016/j.tra.2019.12.020.
[78] Z. Wu y Y. Zhang, “Integrated Network Design and Demand Forecast for On-Demand Urban Air Mobility”, Engineering, 7, 473–487, 2021, DOI: 10.1016/j.eng.2020.11.007.
[79] IFAR, “Scientific Assessment for Urban Air Mobility (UAM)”, Montreal: International Forum for Aviation Research (IFAR), 2023.
[80] D. Perperidou y D. Kirgiafinis, “Urban Air Mobility (UAM) Integration to Urban Planning”, 6th Conference on Sustainable Urban Mobility, August 31–September 2, 2022, Skiathos Island (Greece).
[81] M. Krylova, “Urban planning requirements for the new air mobility (UAM) infrastructure integration”, Master Thesis, Frankfurt University of Applied Sciences, Germany, 2022.
[82] A. Straubinger y M. Fu, “Identification of strategies how urban air mobility can improve existing public transport networks”, Working Paper, Technical University of Munich (Germany), 2019, https://acortar.link/sIGfGY.
[83] Morgan Stanley, “eVTOL/Urban Air Mobility TAM Update: A Slow Take-Off, But Sky's the Limit”, New York: Morgan Stanley Research, 2021.
Descargas
Publicado
Cómo citar
Descargas
Número
Sección
Licencia
Derechos de autor 2025 AiBi Revista de Investigación, Administración e Ingeniería

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La revista ofrece acceso abierto bajo una Licencia Creative Commons Attibution License

Esta obra está bajo una licencia Creative Commons Attribution (CC BY 4.0).