Sistema de procesamiento de imágenes para la detección de residuos sólidos reciclables
DOI:
https://doi.org/10.15649/2346030X.4426Palabras clave:
arduino, cámara, contaminación, drone, matlab, procesamiento de imágenes, residuos sólidosResumen
Uno de los grandes desafíos que enfrenta el mundo actualmente es la contaminación por residuos sólidos, la cual se ha extendido por vastas áreas y amenaza los ecosistemas debido a la acumulación masiva de desechos a lo largo del tiempo. Esta acumulación ha alterado los hábitats de numerosas especies marinas y terrestres. Dichos impactos ambientales son en gran parte consecuencia de prácticas inadecuadas de reciclaje, ya que solo el 10% de los hogares a nivel mundial realiza reciclaje de manera regular. Con el objetivo de contribuir a la solución de este problema, este trabajo presenta el desarrollo de un sistema de procesamiento de imágenes para la detección automática de residuos sólidos reciclables, enfocado en materiales como plástico, cartón y vidrio. La metodología empleada consistió en la captura de imágenes mediante un dron DJI Mavic Mini 2, seguida del procesamiento digital de las imágenes para la clasificación automática de residuos reciclables a través de algoritmos de visión por computadora. Los resultados obtenidos muestran que el sistema logró una tasa de eficiencia del 97.99% en la detección de materiales reciclables en áreas urbanas, destacándose por su precisión y exactitud. Se concluye que el uso de tecnologías de procesamiento de imágenes combinadas con sistemas autónomos de captura, como drones, constituye una herramienta efectiva para mejorar la identificación y clasificación de residuos reciclables, contribuyendo así a una gestión ambiental más eficiente.
Referencias
[1] D. Raza Carrillo and J. Acosta, “Environmental planning and recycling of solid urban waste,” Economía, sociedad y territorio, vol. 22, no. 69, pp. 519–544, May 2022, doi: 10.22136/EST20221696.
[2] C. E. Marchan Solier, V. A. Zorrilla Crespo, M. A. Cardenas Quispe, and A. Pacheco, “Contaminación por Residuos Sólidos Urbanos: Caso Comunidad de Occochaca,” Scientific Research Journal CIDI, vol. 1, no. 1, pp. 1–14, Jul. 2021, doi: 10.53942/SRJCIDI.V1I1.39.
[3] S. D. Caballero Ibarra, O. A. Dueñas Falla, and B. M. Rolón Rodríguez, “Plastic and its two faces,” Revista CONVICCIONES, vol. 6, no. 12, pp. 49–52, 2019.
[4] F. Á. Parada Santamaría, “Impactos negativos que generan los desechos sólidos en las aguas costero marinas,” Revista de Divulgación Científica AQUACIENCIA - ICMARES, vol. 1, no. 1, pp. 5–9, Aug. 2022.
[5] J. Bartra Gómez and J. M. Delgado Bardales, “Gestión de Residuos Sólidos Urbanos y su Impacto Medioambiental,” Ciencia Latina Revista Científica Multidisciplinar, vol. 4, no. 2, pp. 993–1008, Dec. 2020, doi: 10.37811/CL_RCM.V4I2.135.
[6] N. D. Khuong, N. L. Hoang, and S. T. Aleksandrovna, “Gasification of municipal solid waste has high moisture content,” Proceedings of the 3rd 2021 International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE, Mar. 2021, doi: 10.1109/REEPE51337.2021.9388057.
[7] S. Squire, S. Ur Rehman, and M. A. Khan, “Investigating Efficient Municipal Solid Waste Collection Through Technology,” Proceedings of 2021 IEEE Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW, pp. 211–216, 2021, doi: 10.1109/MTTW53539.2021.9607088.
[8] S. Li et al., “Prediction of Typical Flue Gas Pollutants from Municipal Solid Waste Incineration Plants,” Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design, CSCWD, pp. 1304–1309, May 2021, doi: 10.1109/CSCWD49262.2021.9437888.
[9] S. Chepa, S. Singh, H. Dutt, A. Sharma, S. Naik, and H. Mahajan, “A Comprehensive Study of Distinctive Methods of Waste Segregation and Management,” 3rd International Sustainability and Resilience Conference: Climate Change, pp. 440–444, 2021, doi: 10.1109/IEEECONF53624.2021.9668020.
[10] S. Ravi and T. Jawahar, “Smart city solid waste management leveraging semantic based collaboration,” ICCIDS - International Conference on Computational Intelligence in Data Science, Proceedings, pp. 1–4, Jan. 2018, doi: 10.1109/ICCIDS.2018.8272627.
[11] N. N. Ahamad, S. Y. Mohamad, N. S. Midi, S. H. Yusoff, and F. A. Rahman, “Discrimination of Residual and Recyclable Household Waste for Automatic Waste Separation System,” Proceedings of the 2018 7th International Conference on Computer and Communication Engineering, ICCCE, pp. 372–374, Nov. 2018, doi: 10.1109/ICCCE.2018.8539337.
[12] C. Srinilta and S. Kanharattanachai, “Municipal solid waste segregation with CNN,” Proceeding - 5th International Conference on Engineering, Applied Sciences and Technology, ICEAST, Jul. 2019, doi: 10.1109/ICEAST.2019.8802522.
[13] C. le Dinh, S. T. P. Phu, T. Fujiwara, and T. Qui Phan, “Assessment of solid waste collection system-A case study in Hai Chau district, Danang city, Vietnam,” 7th International Scientific Conference on Applying New Technology in Green Buildings, ATiGB, pp. 37–42, 2022, doi: 10.1109/ATIGB56486.2022.9984120.
[14] M. A. Islam, M. A. Rahman, and A. N. Sakib, “A Waste Recycling System for a Better Living World,” IEEE Student Conference on Research and Development, SCOReD, pp. 171–176, Sep. 2020, doi: 10.1109/SCORED50371.2020.9251023.
[15] L. Zhou et al., “Object Detection System Based on Solid Debris Detection by Aerial Imaging,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, pp. 306–320, 2023, doi: 10.1109/JSTARS.2022.3218958.
[16] S. Balamurugan, A. Ajithx, S. Ratnakaran, S. Balaji, and R. Marimuthu, “Design of smart waste management system,” International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS, pp. 1–4, Dec. 2019, doi: 10.1109/ICMDCS.2019.8211709.
[17] A. Pappalardo et al., “Monitoring System for the Storage of Recyclable Solid Wastes,” ANIMMA 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, 2019, doi: 10.1109/ANIMMA.2019.5503790.
[18] S. Sreejith, R. Ramya, R. Roja, and A. Sanjay Kumar, “Intelligent Solid Waste Management System Applied to Garbage Containers,” 5th International Conference on Advanced Computing and Communication Systems, ICACCS, pp. 1079–1082, Mar. 2019, doi: 10.1109/ICACCS.2019.8728531.
[19] D. Guo, H. Liu, B. Fang, F. Sun, and W. Yang, “Visual Performance Guided Tactile Material Recognition System for Solid Waste Recycling,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2656–2664, Oct. 2022, doi: 10.1109/TASE.2021.3065991.
[20] L. Fichtel, A. M. Fruhwald, L. Hosch, V. Schreibmann, C. Bachmeir, and F. Bohlander, “Localization and monitoring of solid waste in autonomous drones using Deep Learning,” Conference of Open Innovation Association, FRUCT, pp. 132–140, May 2021, doi: 10.23919/FRUCT52173.2021.9435549.
[21] H. Kesuma, S. Ahmadi-Pour, H. J. Zimmerman, A. Joseph, and P. Weis, “Ultrasonic wireless sensor network for airborne missions,” 7th IEEE International Conference on Wireless for Space and Extreme Environments, WiSEE 2019 - Conference Proceedings, pp. 122–127, Oct. 2019, doi: 10.1109/WISEE.2019.8920364.
[22] N. Komal Kumar, D. Vigneswari, and C. Rogith, “Efficient modern system based on the Arduino Nano control system,” 5th International Conference on Advanced Computing and Communication Systems, ICACCS, pp. 70–72, Mar. 2019, doi: 10.1109/ICACCS.2019.8728446.
[23] R. de Armas Costa, S. Quintero Torres, C. Acosta Muñoz, and C. Rey Torres, “La transformada de Radon aplicada a la segmentación de imágenes digitales en escala de grises,” Revista Ingenierías Universidad de Medellín, vol. 17, no. 32, pp. 213–227, 2018, doi: 10.22395/rium.v17n32a10.
[24] A. Abdulrahman and S. Varol, “A Review of Image Segmentation Using MATLAB Environment,” 8th International Symposium on Digital Forensics and Security, ISDFS, Jun. 2020, doi: 10.1109/ISDFS49300.2020.9116191.
[25] O. Birsel, U. Zengin, I. Eren, A. Ersen, B. Semiz, and M. Demirhan, “Validation of Novel Image Processing Method for Objective Quantification of Intra-Articular Bleeding During Arthroscopic Procedures,” J. Imaging, vol. 11, no. 2, p. 40, Jan. 2025, doi: 10.3390/jimaging11020040.
[26] Y. Zhang and L. Zhang, “A generative adversarial network approach for removing motion blur in the automatic detection of pavement cracks,” Comput. Civ. Infrastruct. Eng., vol. 39, no. 22, pp. 3412–3434, Nov. 2024, doi: 10.1111/mice.13231.
[27] S. S. Antora, M. A. Alahe, Y. K. Chang, T. Nguyen-Quang, and B. Heung, “Application of a Real-Time Field-Programmable Gate Array-Based Image-Processing System for Crop Monitoring in Precision Agriculture,” AgriEngineering, vol. 6, no. 3, pp. 3345–3361, Sep. 2024, doi: 10.3390/agriengineering6030191.
Descargas
Publicado
Cómo citar
Descargas
Número
Sección
Licencia
Derechos de autor 2025 AiBi Revista de Investigación, Administración e Ingeniería

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La revista ofrece acceso abierto bajo una Licencia Creative Commons Attibution License

Esta obra está bajo una licencia Creative Commons Attribution (CC BY 4.0).