Parameters estimation in Rasch models for estimation of food insecurity in a population.
DOI:
https://doi.org/10.15649/2346075X.3520Keywords:
Rasch model, Food insecurity, FIES, raw scoreAbstract
Introduction: The Food Insecurity Experience Scale is a methodological proposal of the Voices of the Hungry Project of the FAO Statistics Division; is a set of questions whose objective is the measurement of food insecurity as a latent trait. This question module can be included in a survey, then with the response matrix, is possible to calculate prevalences of food insecurity through a Rasch model using the sum of the affirmative answers obtained by a person to the questions of the FIES module as a sufficient statistic for the estimation of the latent trait: Food insecurity. Methodology: A response matrix to the FIES module was simulated in R. Then a Rasch model was applied to this response matrix in order to obtain the theta and beta parameters according to different inferential frameworks: maximum likelihood, Bayesian, marginal and conditional, different R packages were used according to each estimation. Results: The estimation of the parameters θ according to maximum likelihood and conditional estimation are not appropriate to estimate extreme scores. Conclusions: Bayesian and marginal estimation allow to estimate extreme scores for parameters θ, however, have high computational cost. The conditional estimate, which is the estimate currently used in the analytical protocol of the FIES scale at a global level, use pseudo scores to estimate the and and is the recommended estimation process if the severity of the latent trait in individuals/ households is the estimation required.
Keywords: Rasch model, Food insecurity, FIES, raw score
References
ESS, FAO. Food Security indicators. [Online] 2017. http://www.fao.org/economic/ess/ess-fs/ess-fadata/en/#.W0ejMdJKiUk.
Nord, Mark. Introduction to item response theory applied to foos security measurement. Basic concepts, parameters and statistics. Rome : FAO- Voices of the Hungry Project, 2014. Disponible en : https://www.fao.org/3/i3946e/i3946e.pdf
FAO. Métodos para la estimación de indices comparables de prevalencia de la inseguridad alimentaria experimentada por adultos en todo el mundo. Roma : FAO, 2016. ISBN 978-92-5-308835-5 Disponible en : https://www.fao.org/3/i4830s/i4830s.pdf
Virtudes y limitaiones de la teoria de espuesta al ítem para la evaluación educativa en las ciencias médicas. Leenen, Iwin. 9, México : s.n., 2014, Investigación en Edcación Médica, Vol. 3, pp. 40-55. Disponibleen: https://www.redalyc.org/articulo.oa?id=349733231007
Sufficient statistics and latent trait models. Andersen, Erling B. 1, 1977, Psychometrika, Vol. 42, pp. 69-81. DOI: https://doi.org/10.1007/BF02293746
Unbiased estimators of ability parameters of their variance, and of their parallel-forms reliability. Lord, F. 2, 1983, psychometrika, Vol. 48, pp. 233-245. DOI: https://doi.org/10.1007/BF02294018
Rasch, G. On general laws and the meaning of measurement in psychology. www.projecteuclid.org. [Online] THE DANISH INSTITUTE OF EDUCATIONAL RESEARCH, COPENHAGEN, 1961. Disponible en : https://digitalassets.lib.berkeley.edu/math/ucb/text/math_s4_v4_article-22.pdf
Christensen, Karl, Kreiner, Svend and Mesbah, Mounir. Rasch Models in Health. [ed.] Christensen K, Kreiner S and Mesbah M. London -Hoboken, Great Britain - Estados Unidos : ISTE Ltd - John Wiley & Sons, Inc, 2013. ISBN: 978-1-84821-222-0.
Andrich, David. Rasch Models for measurement. [ed.] Sage Publications.Inc. Series: Quantitative Applications in the Social Science, Beverly Hills : Sage Publications, 1988. Vols. 07-068. ISBN13: 9780585181066.
Conditional versus unconditional procedures for sample-free item analysis. Wright, Benjamin D. and Douglas, Graham A. 3, 1977, Educational and Psychological Measurement, Vol. 37, pp. 573-586. DOI: https://doi.org/10.1177/001316447703700301
Hoijtink, Herbert and Boomsma, Anne. On Person Parameter Estimation in the Dichotomus Rasch Model. [ed.] Fisher Gerhard H and Ivo Molenaar. Rasch Models. Foundations, Recent Developments, and applications. New York : Springer-Verlag, 1995, Cap 4, pp. 53-61. ISBN-13:978-1-4612-8704-9 . e-ISBN-13: 978-1-46124230-7. DOl: 10. 1007/ 978-1-46124230-7
Approximation for bayesian ability estimation. Tsutakawa, R.K and Soltys, M.J. 13, 1988, Journal of educational statistics, pp. 117-130. DOI:https://doi.org/10.2307/1164749
The effect of uncertainty of item parameter estimation on ability estimates. Tsutakawa, R.K and Johnson, J.C. 55, 1990, Psychometrika, pp. 371-390. DOI:https://doi.org/10.1007/BF02295293
A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Stout, W.F. 55, 1990, Psychometrika, pp. 293-326. DOI: https://doi.org/10.1007/BF02295289
The asymptotic posterior normality of the latent trait in an item response theory model. Chang, H and Stout, W. 58, 1993, Psychometrika, pp. 37-52. DOI: https://doi.org/10.1007/BF02294469
Fisher, Gerhard H. Molenaar,Ivo. Rasch Models. Foundations, Recent Developments and Applications. New York Inc., Estados Unidos de América : Springer -Verlag, 1995. e-ISBN-13: 978-1-4612-4230-7.
mirt: A Multidimensional Item Response Theory. Chalmers, R. Philip. 6, 2012, Journal of Statistical Software, Vol. 48, pp. 1-29. DOI: 10.18637/jss.v048.i06
Rizopoulos, Dimitris. ltm: Latent Variable Modeling and Item Response Theory Analyses. R package. 2006. DOI : 10.18637/jss.v017.i05
Mair, P, Hatzinger, R and Maier, M.J. eRm: Extended Rasch Modeling 1.0-2. R Package. 2021. DOI: 10.18637/jss.v020.i09
Plummer, Martyn. rjags: Bayesian Graphical Models using MCMC. R package version 4-12.
Cafiero, Carlo, Viviani, Sara and Nord, Mark. Modeling and Extensions using Conditional Maximun Likelihood. R package version. 2018. DOI: 10.1016/j.measurement.2017.10.065
On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Fischer, G H. s.l. : Psychometrika, 1981, Vol. 46, pp. 59-77. DOI: https://doi.org/10.1007/BF02293919
Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Lindsay , B G, Clogg, C c and Grego, J. s.l. : Journal of th American Statistical Association, 1991, Vol. 86, pp. 96-107. DOI: https://doi.org/10.2307/2289719
On item parameter estimation in certain latent trait models. Pfanzagl, J. New York : In Fischer, G.H & D. Laming,D, (Eds) 1994, Contributions to Mathematical Psychology, Psychometrics, and Methodology , pp. 249-263. DOI: https://doi.org/10.1007/978-1-4612-4308-3_19
Downloads
Published
Versions
- 2023-12-05 (2)
- 2023-12-01 (1)
How to Cite
Issue
Section
Altmetrics
Downloads
License
Copyright (c) 2023 Innovaciencia
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published in this scientific journal are protected by copyright. The authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits sharing the work with authorship recognition and without commercial purposes.
Readers may copy and distribute the material from this journal issue for non-commercial purposes in any medium, provided the original work is cited and credit is given to the authors and the journal.
Any commercial use of the material from this journal is strictly prohibited without written permission from the copyright holder.
For more information on the copyright of the journal and open access policies, please visit our website.