Early characterization of an adult population at an insurer’s point of entry as an opportunity to identify hospitalization risk

Authors

DOI:

https://doi.org/10.15649/cuidarte.3290

Keywords:

Health Profile, Insurance Health, Health Management

Abstract

Highlights

  • Patients’ characterization at insurers’ point of entry allows the generation of specific profiles to guide risk management programs.
  • Predicting hospitalization risk enables timely action to minimize costs and catastrophic health events.
  • Identifying the risks of an insurer's members is essential for managing them in a timely manner from the moment of enrollment.
  • It is important to implement predictive programs when providing healthcare services.

Introduction: Health Benefit Plan Administrators must manage the health risk of their members. Therefore, health characterization is performed from enrollment to support decision-making and timely intervention. Objective: To analyze the historical results of characterizing the adult population on admission to the insurance company in relation to the demand for all-cause and psychiatric hospitalization services. Materials and Methods: An observational cross-sectional study with members over 18 years of age, in which an analysis was made of the characterization of the adult population of the insurer and its association with the use of medical consultation services in primary care and all-cause and psychiatric hospitalizations. Bivariate and multivariate analysis was made, and odds ratios (OR) were calculated in logistic regression. Results: Variables significantly associated with having an all-cause hospitalization were identified: having referred history of heart disease OR=1.71(95%CI: 1.33; 2.20), respiratory disease OR= 1. 30(95%CI: 1.04; 1.61), chronic kidney disease OR=1.66(95%CI: 1.13; 2.45), cancer OR=1.65(95%CI: 1.14; 2.40), taking any medication permanently OR=1.35(95%CI: 1.174; 1.56) and smoking OR=1.44(95%CI: 1.12; 1.85). For psychiatric hospitalizations, a history of discouragement, depression, or little hope was relevant with OR=5.12(95%CI: 1.89; 13.87). Discussion: The characterization of patients during enrolment allowed the identification of predictor variables of hospitalization, guiding management from the primary care level minimizing costs and catastrophic health events.   Conclusion: The timely identification of specific patient profiles allows timely actions to minimize health costs and catastrophic health events.

How to cite this article: Vargas-Díaz Lorena María, Pachón Arciniegas Olga Patricia, Osorio Rojas Santiago, Manrique-Hernández Edgar Fabián, Bermon Angarita Anderson. Early characterization of an adult population at an insurer’s point of entry as an opportunity to identify hospitalization risk. Revista Cuidarte. 2024;15(1):e3290.  http://dx.doi.org/10.15649/cuidarte.3290

Author Biographies

Lorena María Vargas-Díaz, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Departamento de Epidemiología. Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Olga Patricia Pachón Arciniegas, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Instituto de Medicina Ambulatoria y Preventiva. Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Santiago Osorio Rojas, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Departamento de Epidemiología. Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Edgar Fabián Manrique-Hernández, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Departamento de Epidemiología. Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Anderson Bermon Angarita, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

Departamento de Epidemiología. Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.

References

Ministerio de Salud y Protección Social. Política de Atención Integral en Salud. [Internet] 2016. Consulta: abril 10, 2023 Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/modelo-pais-2016.pdf

Brown RT, Diaz-Ramirez LG, Boscardin WJ, Lee SJ, Williams BA, Steinman MA. Association of Functional Impairment in Middle Age With Hospitalization, Nursing Home Admission, and Death. JAMA Intern Med. 2019;179(5):668-675. https://doi.org/10.1001/jamainternmed.2019.0008

Crane SJ, Tung EE, Hanson GJ, Cha S, Chaudhry R, Takahashi PY. Use of an electronic administrative database to identify older community dwelling adults at high-risk for hospitalization or emergency department visits: the elders risk assessment index. BMC Health Serv Res. 2010;10:338. Published 2010 Dec 13. https:// doi.org/10.1186/1472-6963-10-338

Avelino-Silva TJ, Farfel JM, Curiati JA, Amaral JR, Campora F, Jacob-Filho W. Comprehensive geriatric assessment predicts mortality and adverse outcomes in hospitalized older adults. BMC Geriatr. 2014;14(1):129.https://doi.org/10.1186/1471-2318-14-129

Santos S, Veiga PM, Paúl C. The Perceived Risk of Hospitalization in Primary Health Care - The Importance of Multidimensional Assessment. Gerontol Geriatr Med. 2022;7:1-11.https://doi.org/10.1177/23337214211063030

Rocha JVM, Marques AP, Moita B, Santana R. Direct and lost productivity costs associated with avoidable hospital admissions. BMC Health Serv Res. 2020;20(1):210. https://doi.org/10.1186/s12913-020-5071-4

Laires PA, Perelman J. The current and projected burden of multimorbidity: a cross-sectional study in a Southern Europe population. Eur J Ageing. 2018;16(2):181-192. https://doi.org/10.1007/s10433-018-0485-0

Kocher RP, Adashi EY. Hospital readmissions and the Affordable Care Act: paying for coordinated quality care. JAMA. 2011;306(16):1794-1795. https://doi.org/10.1001/jama.2011.1561

Weiner JP, Starfield BH, Steinwachs DM, Mumford LM. Development and application of a population-oriented measure of ambulatory care case-mix. Med Care. 1991;29(5):452-472. https://doi.org/10.1097/00005650-199105000-00006

Takahashi PY, Ryu E, Olson JE, Winkler E, Hathcock M, Gupta R, et al. Health behaviors and quality of life predictors for risk of hospitalization in an electronic health record-linked biobank. Int J Gen Med. 2015; 8:247-254. https://doi.org/10.2147/IJGM.S85473

Superintendencia Nacional de Salud. Resolución Número 7855 de 2018. Consulta: abril 13, 2023. Disponible en: https://docs.supersalud.gov.co/PortalWeb/Juridica/Resoluciones/RESOLUCI%C3%93N%207855%20DE%202018.pdf

Vargas Diaz LM, Pachón Arciniegas OP, Osorio Rojas S, Manrique-Hernández EF, Bermon Angarita A. Base_caracterización_vf. Mendeley Data. 2024 V1. https://doi.org/10.17632/55ydfryz4r.1

Ministerio de Salud y Protección Social. Aseguramiento al sistema general de salud. Consulta: julio 7, 2023. Disponible en: https://www.minsalud.gov.co/proteccionsocial/Paginas/aseguramiento.aspx

Ministerio de Salud y Protección Social. Guía conceptual y metodológica para la caracterización de la población afiliada a las Entidades Administradoras de Planes de Beneficios de Salud (EAPB). 2017. Consulta: julio 10, 2023. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/Guia_caracterizacion_EAPB%20version%2021072014.pdf

Zúñiga FA. La Organización Institucional y La Regulación En El Sistema General de Seguridad Social En Salud En Colombia. En: La Salud En Colombia: Logros, Retos y Recomendaciones. Bernál O, Gutierrez C. Editores. Universidad de los Andes, Colombia, 2012. 183–208.

Ministerio de Salud y Protección Social. Resolución 5261 de 1994. Consulta: Julio 7, 2023. Disponible https://www.minsalud.gov.co/Normatividad_Nuevo/RESOLUCI%C3%93N%205261%20DE%201994.pdf

Rey, TA., Scobie, JM. La Arquitectura Institucional Del Sistema de Salud Colombiano: Una Mirada a La Ley 100 y Normas Posteriores. En: La Salud En Colombia: Logros, Retos y Recomendaciones. Bernál O, Gutierrez C. editores. Universidad de los Andes, Colombia, 2012. 209-258.

Muadi Holzheu J., González Romero AA. Evaluación de Riesgos Individuales para Aseguramiento en Salud [Tesis maestría en Administración en Salud] Bogotá. Universidad del Rosario; 2020. Disponible en: https://repository.urosario.edu.co/handle/10336/30335

Acuña, Lizbeth et al. Enfermedad renal en Colombia: prioridad para la gestión de riesgo. Revista Panamericana de Salud Pública. 2016;40(1):16-22 ISSN1680-5348. https://www.scielosp.org/article/rpsp/2016.v40n1/16-22/#

Goetzel RZ, Anderson DR, Whitmer RW, Ozminkowski RJ, Dunn RL, Wasserman J. The relationship between modifiable health risks and health care expenditures. An analysis of the multi-employer HERO health risk and cost database. J Occup Environ Med. 1998;40(10):843-854. https://doi.org/10.1097/00043764-199810000-00003

Boult C, Dowd B, McCaffrey D, Boult L, Hernandez R, Krulewitch H. Screening elders for risk of hospital admission. J Am Geriatr Soc. 1993;41(8):811-817. https://doi.org/10.1111/j.1532-5415.1993.tb06175.x

Crane SJ, Tung EE, Hanson GJ, Cha S, Chaudhry R, Takahashi PY. Use of an electronic administrative database to identify older community dwelling adults at high-risk for hospitalization or emergency department visits: the elders risk assessment index. BMC Health Serv Res. 2010;10:338. https://doi.org/10.1186/1472-6963-10-338

Takahashi PY, Sauver JL, Olson TC, Huber JM, Cha SS, Ebbert JO. Association between underweight and hospitalization, emergency room visits, and mortality among patients in community medical homes. Risk Manag Healthc Policy. 2013;6:1-6. https://doi.org/10.2147/RMHP.S39976

Hatef E, Searle KM, Predmore Z, Lasser EC, Kharrazi H, Nelson K, et al. The impact of social determinants of health on hospitalization in the Veterans Health Administration. AmJPrevMed. 2019;56(6):811-818. https://doi.org/10.1016/j.amepre.2018.12.012

Berkowitz SA, Seligman HK, Meigs JB, Basu S. Food insecurity, healthcare utilization, and high cost: a longitudinal cohort study. Am J Manag Care. 2018;24(9):399-404. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426124/

Zulman DM, Maciejewski ML, Grubber JM, Weidenbacher HJ, Blalock DV, Zullig LL et al. Patient-Reported Social and Behavioral Determinants of Health and Estimated Risk of Hospitalization in High-Risk Veterans Affairs Patients. JAMA Netw Open. 2020;3(10):e2021457.https://doi.org/10.1001/jamanetworkopen.2020.21457

Ridgeway JL, Beebe TJ, Chute CG, Eton DT, Hart LA, Frost MH et al. A brief Patient-Reported Outcomes Quality of Life (PROQOL) instrument to improve patient care. PLoS Med. 2013;10(11):e1001548. https://doi.org/10.1371/journal.pmed.1001548

Ministerio de la Salud y Protección Social de la República de Colombia, COLCIENCIAS, Centro Nacional de Investigación en Evidencia y Tecnologías en Salud CINETS. Guía de práctica clínica para la detección temprana, diagnóstico y tratamiento de la fase aguda de intoxicación de pacientes con abuso o dependencia del alcohol-2013. Guía N° 23. Consulta agosto 13, 2023. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IETS/GPC_Prof_Salud_OH.pdf

Published

2024-03-21

How to Cite

1.
Vargas-Díaz LM, Pachón Arciniegas OP, Osorio Rojas S, Manrique-Hernández EF, Bermon Angarita A. Early characterization of an adult population at an insurer’s point of entry as an opportunity to identify hospitalization risk. Revista Cuidarte [Internet]. 2024 Mar. 21 [cited 2024 Dec. 19];15(1). Available from: https://revistas.udes.edu.co/cuidarte/article/view/3290

Altmetrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)